
Journal of Engineering Sciences and Innovation
Volume 10, Issue 2 / 2025, p. 221 - 232

 Technical Sciences

 Academy of Romania F. Electrical, Electronics Engineering,
 www.jesi.astr.ro Computer Sciences and Engineering

Received 15 January 2025 Accepted 10 June 2025

Received in revised form 14 May 2025

Performance improvement in computing the

block diagonal form of matrix pencils

VASILE SIMA*

Technical Sciences Academy of Romania, Bucharest, Romania

Abstract. Techniques for computing the block diagonal form for matrix pencils are

presented. The computation starts by reducing the matrix pencil to a generalized Schur

form using unitary transformations. The off-diagonal blocks are then successively

annihilated by well-conditioned non-unitary transformations, using solutions of generalized

Sylvester equations. The ultimate reduction to diagonal or quasi-diagonal form, with blocks

of order 1 and 2, is usually impossible, since this could lead to very inaccurate results. The

basic techniques try to increase the granularity by selecting appropriate eigenvalues and

reordering them to improve the conditioning of the problem. For high order matrix pencils,

with large and dense clusters of eigenvalues, these techniques spend much computing time

unsuccessfully attempting to split such clusters. Incorporating clustering techniques into the

block diagonalization process allows to detect hard to split subproblems and to accept

larger diagonal blocks. Numerical results are presented illustrating the performance and

effectiveness of these techniques.

Keywords: descriptor system, linear multivariable systems, numerical methods, simulation,

software.

1. Introduction

One important application in the analysis and design of a linear dynamical system

is the computation of its response to various inputs, including simulated

disturbances. Often, such a computation has to be performed many times.

Therefore, it is important to be able to do such simulations as fast as possible. One

approach to reduce the computational effort by a factor about two is to first

transform the original system to a (generalized) Hessenberg or Schur form. This

can be done using unitary equivalence transformations. But significantly much

substantial speed improvement can be obtained using the block diagonal form,

which decouples the state part of the system into smaller subsystems, preserving as

*Correspondence address: vasilesima@ymail.com

http://doi.org/10.56958/jesi.2025.10.2.221

http://www.jesi.astr.ro/

Sima Vasile / Performance improvement in computing the block diagonal form …

222

much as possible its dynamical behavior. This reduction, however, needs non-

unitary transformations. To ensure an adequate accuracy, the numerical condition

of these transformations should be bounded. The reduction involves solution of

(generalized) Sylvester equations. For large-scale systems, another approach is

model reduction (see, e.g., [1] and the references therein), that reduces the order of

a system, approximating its essential dynamics. The associated techniques differ

from those for block diagonalization, but their aim is the same, namely, to allow

faster further computations.

When the orders of the diagonal blocks are small, powers of the transformed

matrices can be computed easily, and this is useful to evaluate functions (defined

by power series) of the original matrices [2]. The best reduced theoretical forms,

like Jordan form of a matrix, or Kronecker form of a matrix pencil, are often not

well determined numerically. Small perturbations of some matrix elements can

make some blocks to split or coalesce [2]. In the second case, splitting such blocks

may need very ill-conditioned transformation matrices. Although this usually

happens for blocks with close eigenvalues, it may happen even for matrices with

well separated eigenvalues. This is related to the sensitivity of the associated

eigenvalues [3], [4].

Theoretically, the order of the diagonal blocks can be no smaller than the order of

the blocks in the Kronecker canonical form [5]. In practice, they have to be larger,

in order to limit the conditioning of the transformation matrices [6]. If there are

clusters of close eigenvalues, then usually these eigenvalues cannot be separated by

well-conditioned transformations, and it could be necessary to leave them in the

same diagonl block.

Consider a linear time-invariant system,

 𝐸𝜆(𝑥(𝑡)) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡), (1)

where 𝐴, 𝐸 ∈ 𝑹𝑛×𝑛, 𝐵 ∈ 𝑹𝑛×𝑚, 𝐶 ∈ 𝑹𝑝×𝑛, 𝐷 ∈ 𝑹𝑝×𝑚, 𝑥(𝑡) ∈ 𝑹𝑛 is the state

vector, 𝑦(𝑡) ∈ 𝑹𝑝 is the output vector, 𝑢(𝑡) ∈ 𝑹𝑚 is the input vector, and 𝜆(𝑥(𝑡))

is the differential operator, d𝑥(𝑡)/d𝑡, or the advance difference operator,

𝜆(𝑥(𝑡)) = 𝑥(𝑡 + 1), for continuous- and discrete-time case, respectively. The

input vector can include disturbance and control components, while the output

vector can contain measured and regulated components. The matrix 𝐸 is singular,

for instance, when model (1) includes algebraic constraints. Such systems are

referred to as descriptor (or singular) systems. It is assumed in the sequel that the

matrix pencil 𝜆𝐸 − 𝐴 is regular, that is, det(𝜆𝐸 − 𝐴) ≢ 0. This matrix pencil can

be reduced to a simpler form, using equivalence transformations [7], which are also

applied to 𝐵 and 𝐶,

 𝐴̃ = 𝑄𝑇𝐴𝑍, 𝐸̃ = 𝑄𝑇𝐸𝑍, 𝐵̃ = 𝑄𝑇𝐵, 𝐶̃ = 𝐶𝑍, (2)

where 𝑄, 𝑍 ∈ 𝑹𝑛×𝑛. In theory, the system (2) has exactly the same dynamical

behavior as (1), but this is not true in practice, due to limited precision numerical

computations. The best practical results can be obtained using unitary

Journal of Engineering Sciences and Innovation, Vol. 10, Issue 2 / 2025

223

transformations, more specifically, orthogonal, satisfying 𝑄𝑇𝑄 = 𝑄𝑄𝑇 = 𝐼𝑛 and

𝑍𝑇𝑍 = 𝑍𝑍𝑇 = 𝐼𝑛, where 𝐼𝑛 is the identity matrix of order 𝑛. These transformations

preserve the norm of any matrix on which they are applied, and the computed

condition numbers of the original and transformed matrices are very close, since

the singular values are minimally perturbed. In the complex case, the formulas are

similar, but the transposition operator 𝑇 is replaced by the conjugate transpose

operator, 𝐻. Any regular real matrix pencil 𝜆𝐸 − 𝐴 can be reduced via (2) to an

equivalent one, 𝜆𝐸̃ − 𝐴̃, with theoretically the same spectrum, by orthogonal

matrices 𝑄 and 𝑍, so that the real matrix 𝐸̃ is upper triangular and the real matrix 𝐴̃

is upper quasi-triangular, i.e., 𝐴̃ is block triangular, with 1 × 1 and 2 × 2 diagonal

blocks. If the 1 × 1 and 2 × 2 diagonal blocks correspond to real and complex

conjugate eigenvalues, respectively, the pair (𝐴̃, 𝐸̃) is said to be in a generalized

(real) Schur form. In the complex case, the matrices 𝐴̃ and 𝐸̃ are both complex

upper triangular. If the matrix 𝐸 is identity, then the matrix 𝐴 is reduced to (real)

Schur form, 𝐴̃ = 𝑄𝑇𝐴𝑄, and 𝐵̃ and 𝐶̃ are defined by 𝐵̃ = 𝑄𝑇𝐵 , 𝐶̃ = 𝐶𝑄.

The paper is organized as follows. Section 2 presents block diagonalization

techniques. The real generalized case will be mainly considered, since the other

cases are simpler. Section 3 deals with implementation details associated to the

developed solvers. Section 4 shows some numerical results illustrating the

performance of the generalized solver. Finally, Section 5 summarizes the

conclusions.

2. Block diagonalization techniques

The algorithms for block diagonalization of matrix pencils start with data in

generalized Schur form. For convenience, it will be assumed that 𝐴 and 𝐸 are

already reduced to this form, and 𝐵 and 𝐶 are the corresponding matrices. The

transformations which are further applied to 𝐴 and 𝐸 are optionally accumulated

and finally applied to 𝐵 and 𝐶.

The generalized Schur form can be recast to as

 𝐴 = [
𝐴11 𝐴12

0 𝐴22
] , 𝐸 = [

𝐸11 𝐸12

0 𝐸22
] , (3)

where initially 𝐴11 and 𝐸11 are the first pair of diagonal blocks, of order 1, in the

complex case, but 1 or 2, in the real case. An attempt is made to compute the

following transformation matrices, 𝑋 and 𝑌, partitioned as 𝐴 and 𝐸,

 𝑋 = [
𝐼 𝑉
0 𝐼

] , 𝑌 = [
𝐼 𝑊
0 𝐼

] , (4)

where 𝐼 are identity matrices of appropriate order, such that

 𝑋−1𝐴𝑌 = [
𝐴11 0

0 𝐴22
] , 𝑋−1𝐸𝑌 = [

𝐸11 0
0 𝐸22

] (5)

Sima Vasile / Performance improvement in computing the block diagonal form …

224

and the elements of 𝑋 and 𝑌 do not exceed, in magnitude, a given value 𝜏, 𝜏 > 1.

A typical value for 𝜏 is 5000, but it can be as lower as 100 for problems with well-

conditioned spectra. The special structure of 𝑋 ensures that 𝑋−1 is easily obtained,

since it has the same form as 𝑋, but 𝑉 is replaced by −𝑉. Using (4) in (5), it

follows that

 𝑋−1𝐴𝑌 = [
𝐼 −𝑉
0 𝐼

] [
𝐴11 𝐴12

0 𝐴22
] [

𝐼 𝑊
0 𝐼

] = [
𝐴11 𝐴11𝑊 + 𝐴12 − 𝑉𝐴22

0 𝐴22
] , (6)

and 𝑋−1𝐸𝑌 has a similar formula. The block diagonal form in (5) is obtained if 𝑉

and 𝑊 satisfy the following generalized Sylvester equation [8]

 𝐴11𝑊 − 𝑉𝐴22 = −𝜎𝐴12 , 𝐸11𝑊 − 𝑉𝐸22 = −𝜎𝐸12 , (7)

where 0 ≤ 𝜎 ≤ 1 is a scaling factor, used for instance by the LAPACK solver [9],

to avoid overflow in the computations. Usually, 𝜎 = 1, and smaller values indicate

possible ill-conditioning.

If all elements of 𝑉 and 𝑊 have magnitude less than or equal to 𝜏, the blocks 𝐴11

and 𝐸11 are accepted and the matrices then have the following form

𝐴 = [

𝐴11 0 0

0 𝐴̂11 𝐴̂12

0 0 𝐴̂22

], [
𝐴̂11 𝐴̂12

0 𝐴̂22

] ≔ 𝐴22,

 𝐸 = [

𝐸11 0 0

0 𝐸̂11 𝐸̂12

0 0 𝐸̂22

] , [
𝐸̂11 𝐸̂12

0 𝐸̂22

] : = 𝐸22 . (8)

The new transformation matrices will act on the part with hat accents, that is, their

form will be

 𝑋̂ = [
𝐼 0 0
0 𝐼 𝑉̂
0 0 𝐼

], 𝑌̂ = [
𝐼 0 0
0 𝐼 𝑊̂
0 0 𝐼

] , (9)

where 𝑉̂ and 𝑊̂ will solve, if possible, the equations in (7) for submatrices with hat

accents. Hence, the essential part of each individual transformation has the form in

(4). If 𝑉̂ and 𝑊̂ are accepted, then the current transformation matrices will be 𝑋 ≔

𝑋𝑋̂ and 𝑌 ≔ 𝑌𝑌̂, with

𝑋 = [
𝐼 𝑉11 𝑉12

0 𝐼 0
0 0 𝐼

] [
𝐼 0 0
0 𝐼 𝑉̂
0 0 𝐼

] = [
𝐼 𝑉11 𝑉11𝑉̂ + 𝑉12

0 𝐼 𝑉̂
0 0 𝐼

], [𝑉11 𝑉12] ≔ 𝑉,

Journal of Engineering Sciences and Innovation, Vol. 10, Issue 2 / 2025

225

and similarly for 𝑌. It follows that updating 𝑋 and 𝑌 for new individual

transformations only involves the matrix operations of the form 𝑉11𝑉̂ + 𝑉12 and

𝑊11𝑊̂ + 𝑊12.

But if any of the elements of 𝑉 and 𝑊 exceeds 𝜏 in magnitude, or if the linear

system corresponding to (7) is (almost) singular (that happens when the pairs (𝐴11,

𝐸11) and (𝐴22, 𝐸22) have common or very close eigenvalues), the blocks 𝐴11 and

𝐸11 are not accepted, since the transformations 𝑋 and 𝑌 are considered to be too ill-

conditioned. However, it could be possible to extend 𝐴11 and 𝐸11 by including

other diagonal block(s) from 𝐴22 and 𝐸22 , and find acceptable transformations.

There are strategies to choose suitable blocks so that the conditioning of the

extended problem is acceptable. One such strategy finds a pair of 1 × 1 (or 2 × 2)

diagonal blocks of 𝐴22 and 𝐸22 whose eigenvalue(s) are the closest to the mean of

eigenvalues of the pair (𝐴11, 𝐸11). This block pair is moved by orthogonal

equivalence transformations to the leading position of 𝐴22 and 𝐸22 [7]. The moved

diagonal blocks are then appended to 𝐴11 and 𝐸11, increasing their size by 1 (or 2),

and another attempt is made to solve the corresponding generalized Sylvester

equation (7). If the new transformation matrices have all elements with magnitude

at most 𝜏, the current blocks 𝐴11 and 𝐸11 are accepted, the corresponding matrices

𝑋 and 𝑌 postmultiply the current transformation matrices and the same procedure

is applied to the blocks 𝐴22 and 𝐸22. Other block selection strategies will be

discussed in Section 3. This approach can be seen as being of „bottom-up” type.

Optionally, the transformations matrices can be initialized on input to the solver,

and they can be updated during the block diagonalization process. This option is

useful, for instance, when the original system matrices 𝐴 and 𝐸 are not in a

generalized Schur form; in this case, 𝑋 and 𝑌 are initialized by the left and right,

respectively, orthogonal matrices generated in the reduction to this Schur form. At

the end of the diagonalization, 𝑋 and 𝑌 will contain the matrices that would reduce

the original data 𝐴 and 𝐸 to the block diagonal form. Therefore, 𝑋 and 𝑌 can then

be applied to 𝐵 and 𝐶, ensuring the equivalence between the original and the

reduced system.

The block diagonalization solver in the SLICOT Library [10], developed by the

author, delivers the transpose of the final matrix 𝑋. This ensures the compatibility

with the reduction to the generalized Schur form, performed by the LAPACK

routines, since the reduced matrices are obtained in the same form: 𝐴̃ =
𝑄𝑇𝐴𝑍, 𝐸̃ = 𝑄𝑇𝐸𝑍 and 𝐴̃ = 𝑋𝑇𝐴𝑌, 𝐸̃ = 𝑋𝑇𝐸𝑌, for Schur reduction and block

diagonalization, respectively. In each successful step of the block diagonalization,

only the rows and columns involved in that step need to be updated in 𝑋 and 𝑌.

(Note that the MATLAB command qz returns the matrix 𝑄𝑇 instead of 𝑄.)

In the standard case, only the matrix 𝐴 has to be transformed, 𝑊 = 𝑉, and 𝑉 is

obtained by solving a Sylvester equation [11], given by the first formula in (7) with

𝑊 = 𝑉. Adaptations of the solvers for standard Sylvester equation [11] and

generalized Sylvester equation [8], for controlling the magnitude of the individual

elements of the computed solution [2], are used to obtain 𝑉 and 𝑊.

Sima Vasile / Performance improvement in computing the block diagonal form …

226

The algorithm usually requires O(𝑛3) operations, but O(𝑛4) are possible in the

worst case, when the matrix pencil cannot be block diagonalized by well-

conditioned transformations. The individual non-orthogonal transformation

matrices used in the reduction of 𝐴 and 𝐸 to a block diagonal form have condition

numbers of the order 𝜏. This does not guarantee that their product is well-

conditioned enough. But it can be ensured that the transformations 𝑋 and 𝑌 have

condition numbers, cond(𝑋) and cond(𝑌), respectively, that are not much latger

than 𝜏, where cond(𝑀) ≔ ‖𝑀‖‖𝑀−1‖ for any square matrix 𝑀. This can be

obtained by scaling the rows and columns of each individual transformation

matrices like in (9), so that ‖𝑋𝑖,:‖ = 1 and ‖𝑌:.𝑖‖ = 1. Diagonal scaling matrices,

𝐷𝑋 and 𝐷𝑌 are used, where 𝐷𝑋 = diag(𝐼, 𝐷𝑉) and 𝐷𝑖𝑖
𝑉 = 1/(1 + ‖𝑉𝑖,:‖

2
)1/2 for

each row 𝑖 of 𝑉, and similarly for 𝑌. If ‖𝑉‖, hence ‖𝑋‖ are large, which would

imply an ill-conditioned matrix 𝑋, it follows that ‖𝐷𝑋𝑋‖ ≈ 1 and ‖(𝐷𝑋𝑋)−1‖ ≈

√1 + ‖𝑉‖2 ≈ ‖𝑉‖, hence cond(𝐷𝑋𝑋) = ‖𝐷𝑋𝑋‖‖(𝐷𝑋𝑋)−1‖ ≈ ‖𝑉‖; without this

normalization, one would obtain cond(𝑋) ≈ ‖𝑉‖2. Clearly, the scaling used for

normalization is also applied to the corresponding parts of 𝐴 and 𝐸 in order to

ensure the equivalence between the original and the reduced matrix pencils.

Normalization of the columns of 𝑌 which are no longer modified, and updating of

𝐴 and 𝐸, is done during the reduction process. Normalization of all columns of 𝑋

(not rows, due to the computation of the transposed matrix), and the corresponding

update of 𝐴 and 𝐸 are done at the end of the computational process.

3. Implementation issues

The computation of block diagonal forms for matrices and matrix pencils, with real

or complex elements, can be performed using subroutines from the SLICOT

Library [10], available on GitHub, https://github.com/SLICOT/SLICOT-

Reference. The data matrices are assumed to be in Schur or generalized Schur

form, which can be obtained by LAPACK subroutines. There are options to specify

the desired strategy and the bound 𝜏 on the magnitude of the elements of the

individual transformations. The tolerance 𝜃, used by the strategies for selecting the

blocks to be moved, can be specified, but a default value can be set instead. The

optimal size of the real working array can be computed by the generalized solver

using a special call with this size set to −1; the returned value can then be given as

input argument in a second solver call. The use of this feature could reduce the

computing time for systems with large order, due to calls to the needed efficient

BLAS 3 routines [12], instead of the slower, but some memory saving BLAS 2

routines. To conserve memory, at each successful step of the reduction, the

matrices 𝑉 and 𝑊 are stored in the memory space for 𝐴12 and 𝐸12. However, 𝐴12

and 𝐸12 have to be saved before calling the generalized Sylvester solver, since it

may use this memory space before an element of magnitude larger than 𝜏 is found;

in such a case the calculations must be redone for a larger block pair, that should

include the previous 𝐴12 and 𝐸12. Actually, 𝐴12
𝑇 and 𝐸12

𝑇 are saved in the

Journal of Engineering Sciences and Innovation, Vol. 10, Issue 2 / 2025

227

corresponding zero lower triangular part of 𝐴 and 𝐸, respectively. After a

successful reduction step and updating 𝑋 and 𝑌 (if desired), the space for 𝐴12, 𝐸12,

𝐴12
𝑇 and 𝐸12

𝑇 is set to zero.

The current block diagonalization routines included in SLICOT do not use

advanced clustering information. Several strategies are available for selecting a

new block pair to be added to the already reduced leading block diagonal form.

The desired strategy is chosen by specifying an input argument, SORT, of the

routine. The „closest to the mean” strategy, discussed in Section 2, is selected by

setting SORT = 'N'. In a variation of this strategy, used by setting SORT = 'S', the

diagonal blocks of the generalized real Schur form are reordered before each step

of the reduction, so that each cluster of generalized eigenvalues, defined as

specified in the description of the tolerance 𝜃 below, appears in adjacent blocks.

The blocks for each cluster are merged together, and the procedure described in

Section 2 is applied to the larger blocks. Using the option SORT = 'S' will usually

provide better efficiency than the standard option (SORT = 'N'), proposed in [2],

because there could be no or few unsuccessful attempts to compute individual

transformation matrices 𝑋 and 𝑌 of the form (4) or (9). However, the resulting

dimensions of the blocks are usually larger; this could make subsequent

calculations less efficient.

For other two strategies, chosen by setting SORT = 'C' or 'B', the procedure is

similar to that for SORT = 'N' or 'S', respectively, but the blocks of 𝐴22 and 𝐸22

whose eigenvalue(s) is (are) the closest to those of (𝐴11, 𝐵11) (not to their mean)

are selected and moved to the leading position of 𝐴22 and 𝐸22. This is called the

„closest-neighbour” strategy.

If SORT is set to 'S' or 'B', the tolerance 𝜃 is used for reordering the diagonal

blocks of the block upper triangular matrix pair. If 𝜃 > 0, then the given value of 𝜃

is used as an absolute tolerance: a pair of blocks 𝑖 and a temporarily fixed pair of

blocks 𝛼 (the first pair of blocks of the current trailing pair of submatrices to be

reduced) are considered to belong to the same cluster if their eigenvalues satisfy

the following „distance” condition |𝜇𝛼 − 𝜇𝑖| ≤ 𝜃, where 𝜇𝛼 and 𝜇𝑖 denote the

eigenvalues of two block pairs. If 𝜃 < 0, then the given value of 𝜃 is used as a

relative tolerance: the pairs of blocks 𝑖 and 𝛼 are considered to belong to the same

cluster if their eigenvalues satisfy, for finite eigenvalues 𝜇𝑗, |𝜇𝛼 − 𝜇𝑖| ≤ |𝜃| ×

 max{ |𝜇𝑗|, 𝑗 = 1, … , 𝑛}. If 𝜃 = 0, then an implicitly computed, default tolerance,

defined by 𝜃 = 𝜀𝑀
1/4

 is used instead, as a relative tolerance, where 𝜀𝑀 is the

machine precision, 𝜀𝑀 ≈ 2.22 × 10−16. The approximate symmetric chordal

metric is used as „distance” of two complex, possibly infinite numbers, 𝑥 and 𝑦.

This metric is given by the formula

 𝑑(𝑥, 𝑦) = min (|𝑥 − 𝑦|, |
1

𝑥
−

1

𝑦
|), (10)

taking into account the special cases of infinite or NaN values. If SORT = 'N' or

'C', the tolerance 𝜃 is not used.

Sima Vasile / Performance improvement in computing the block diagonal form …

228

These bottom-up strategies are very efficient for matrix pencils with relatively

small order and well separated eigenvalues, in which case the solver often succeeds

to obtain diagonal blocks of order at most two. For large order problems with

clustered eigenvalues, the solution time can be high, due to the possibility to have a

big number of unsuccessful attempts to split the blocks. A preliminary analysis of

the clustered structure of the spectrum, followed by an appropriate reordering of

the eigenvalues, could improve the efficiency. Specifically, starting by the most

separated eigenvalues, the solver could quickly decouple them, leaving to the end

all possibly big clusters of eigenvalues. Few failed attempts to split such a cluster

could signal that there is no reason to continue the computations and therefore,

finish the process with one or more large blocks. These strategies could be

considered as being of „top-down” type. In implementation, the 𝑛𝑝(𝑛𝑝 − 1)/2

pairwise distances between all 𝑛𝑝 eigenvalues with nonnegative imaginary parts

are computed, since the eigenvalues with negative imaginary parts should be

considered together with their complex conjugate counterparts. Euclidean distance

is used if there are only finite eigenvalues; otherwise, chordal metric (10) can be

computed, in order to deal in the same way with finite and infinite eigenvalues.

(Alternatively, all infinite eigenvalues can be included in the same cluster and can

be separated from the beginning.) The distance information is used to build a

linkage matrix, which shows how the eigenvalues should be grouped into clusters.

The size of this matrix is (𝑛𝑝 − 1) × 3. The third column contains a selected list of

distances, in decreasing order, while the first two columns specify the objects

which are grouped together into binary clusters. The objects are eigenvalues or

detected groups of close eigenvalues. The newly formed objects are linked together

and to other objects into bigger clusters, until all 𝑛𝑝 eigenvalues are linked in a

binary tree. The clusters that contain complex eigenvalues are extended with the

corresponding eigenvalues with negative imaginary parts; the eigenvalues in a

complex conjugate pair appear successively, with eigenvalue having positive

imaginary part in the first position. The number of clusters to be considered can be

specified. This number should be smaller than 𝑛𝑝, possibly much smaller.

4. Numerical results

Extensive testing has been performed to evaluate the standard and generalized

block diagonalization solvers. The computations have been done in double

precision on an Intel Core i7-3820QM portable computer (2.7 GHz, 16 GB RAM).

Some results obtained with the generalized solver are presented below. An

executable MEX-file has been built using the solver source code, SLICOT routines

and MATLAB-provided optimized LAPACK and BLAS routines.

Example 1. Consider first a random example generated using the following

MATLAB commands

 A = rand(n); E = rand(n); p = 10^3*rand(n, 1); q = rand(n, 1)/10^2;

 P = diag(p); Q = diag(q); A = P*A*Q; E = P*E*Q;

Journal of Engineering Sciences and Innovation, Vol. 10, Issue 2 / 2025

229

The random sequence has been initialized using the command rng('default'), for

reproductibility of the results. The executable solver has been called with all four

options for SORT, with either original matrices or in their generalized Schur form,

and with transformation matrices computed or not. Hence, there are 16 calls for

each value of 𝑛. For 𝑛 = 50, 𝜏 = 100, the maximum block size for all calls has

been 2, and the total CPU time has been 0.079542 s (seconds), resulting a mean

time of 0.0049714 s. The mean and standard deviation of the 24 relative errors

between initial and final eigenvalues (16 errors) and between the initial and

transformed matrix pairs (8 errors) have been 2.1649e-16 and 7.56342e-17,

respectively. The relative errors are computed as follows

 𝑒𝐴 = ‖𝑋𝑇𝐴̃𝑌 − 𝐴̂‖/max (1, ‖𝐴̃‖), 𝑒𝐸 = ‖𝑋𝑇𝐸̃𝑌 − 𝐸̂‖/max (1, ‖𝐸̃‖),

 𝑒𝜇 = ‖𝜇̃ − 𝑃𝜇̂‖/max (1, ‖𝜇̃‖), (11)

where 𝑃 is a permutation matrix (chosen to reorder 𝜇̂ in agreement to 𝜇̃), and the

variables with tilde and hat accents correspond to the generalized Schur form and

the computed results, respectively.

For 𝑛 = 100, 𝜏 = 100, the solver could not split the spectrum, so the maximum

block size for all calls has been 100. The total CPU time has been 0.565525 s and

its mean value 0.035345 s. The mean and standard deviation of the relative errors

have been 1.9846e-15 and 2.2303e-15, respectively. The spectrum of the matrix

pencil is shown in Fig.1. Although there are several well separated eigenvalues,

these could not be split. However, using 𝜏 = 5000 for the same example, a perfect

block diagonalization is obtained, that is, the number of blocks of size 2 equals the

number of complex conjugate eigenvalues. The total CPU time has been 0.25866 s,

resulting a mean time of 0.016166 s. The mean and standard deviation of all 24

relative errors in (11) have been 1.3076e-16 and 5.8876e-17, respectively. A

similar behavior also appears for 𝜏 = 100, but without scaling of 𝐴 and 𝐸 in the

MATLAB commands above.

Fig.1. The spectrum of a randomly generated matrix pencil of order 100.

Sima Vasile / Performance improvement in computing the block diagonal form …

230

Using several strategies for a preliminary reordering of the eigenvalues μ̃, for 6

clusters (of eigenvalues with nonnegative imaginary parts), perfect block

diagonalization results have been obtained, and the CPU times for those strategies

varied between 0.0056 s and 0.011479 s. Moreover, the same results have been

produced even with τ = 100, when the CPU times varied between 0.004889 s and

0.012211 s. Therefore, the mean CPU time has been reduced by a factor of about 2

compared to the results using botom-up strategies. The performance statistics are

summarized in Table 1, where 𝑏 denotes the vector of diagonal block orders and

𝑒 ∈ 𝐑24 contains the eight values max(𝑒𝐴, 𝑒𝐸) and 16 values 𝑒𝜇 for all 16 solver

calls.

Table 1. Example 1 performance statistics.

𝑛 𝜏 max(𝑏) CPU time (s) mean(CPU time) mean(𝑒) std(𝑒)

50 100 2 0.079542 0.0049714 2.1649e-16 7.5634e-17

100 100 100 0.565525 0.035345 1.9846e-15 2.2303e-15

100 5000 2 0.25866 0.016166 1.3076e-16 5.8876e-17

Example 2. A matrix pencil of order 999 has been investigated. It has 107 real are

446 complex conjugate eigenvalues. The eigenvalues with nonnegative imaginary

parts are displayed in Fig.2. Without using clustering information, the block

diagonalization solver, with SORT = ’N’ and 𝜏 = 5000, obtained a solution with

135 blocks in about 62.68 s. The largest block, of order 734, appeared in the 89-th

position; there are three 1 × 1 and 131 2 × 2 diagonal blocks. The remaining 104

real eigenvalues are included in the largest block. The same block structure and

comparable CPU times have been recorded for the other values of the parameter

SORT. The existence of such a large block is due to a great number of badly

separated eigenvalues, both real and complex conjugate.

Fig. 2. The eigenvalues with nonnegative imaginary parts of a matrix pencil of order 999.

Journal of Engineering Sciences and Innovation, Vol. 10, Issue 2 / 2025

231

To investigate the advantages of exploiting the clustering information, several

values for the number of clusters have been tried. The best results have been

obtained for 120 clusters. There are 141 diagonal blocks, with the largest block, of

order 719, appearing in the last position; the other 140 diagonal blocks are 2 × 2.

All real eigenvalues are included in the largest block. The total CPU time for

reordering the eigenvalues 𝜇̃ and block diagonalization has been 4.6905 s, that is,

this execution was 13.36 times faster than the execution without using clustering

information. Moreover, more blocks have been found, and the largest block has a

smaller order. This illustrates the benefits of considering clustering techniques in

the block diagonalization algorithm. The performance statistics are summarized in

Table 2. The numbers of 1 × 1 and 2 × 2 blocks are also given.

Table 2. Example 2 performance statistics.

size(𝑏) max(𝑏) position # 1 × 1 # 2 × 2 CPU time (s) # clusters

135 734 89 3 131 62.68 -

141 719 141 0 140 4.69 120

5. Conclusions

Techniques for computing the block diagonal form for matrix pencils are

presented. Such a form is very useful, for instance, for fast simulation of linear

time-invariant descriptor systems, since their state dynamics can often be very well

approximated by a series of decoupled subsystems of much lower sizes. Starting by

reducing the matrix pencil to a generalized Schur form by unitary transformations,

the off-diagonal blocks are then successively annihilated by well-conditioned non-

unitary transformations, using solutions of generalized Sylvester equations. The

ultimate reduction to diagonal or quasi-diagonal form, with blocks of order 1 (and

2, in the real case), is often impossible, since this could drastically diminish the

accuracy of the results. The basic techniques attempt to increase the granularity as

much as possible, by selecting appropriate eigenvalues and reordering them to

improve the conditioning of the problem. For high order matrix pencils, with large

and dense clusters of eigenvalues, these techniques may spend much computing

time unsuccessfully trying to split such clusters into smaller ones. Further

investigation will be devoted for incorporating advanced clustering techniques into

the block diagonalization process for detecting subproblems hard to split, and

therefore quickly accepting larger order diagonal blocks. Numerical results are

presented which illustrate the performance and effectiveness of these techniques;

for instance, using clustering information the computing effort was reduced by a

factor bigger than 10 for a matrix pencil of order 999.

Sima Vasile / Performance improvement in computing the block diagonal form …

232

Acknowledgements

Acknowledgements are addressed to Pascal Gahinet for valuable suggestions.

References

[1] Mehrmann V., Stykel T., Balanced truncation model reduction for large-scale systems in

descriptor form, Benner, P., Mehrmann, V., D. Sorensen (eds.), Dimension Reduction of Large-Scale

Systems, vol. 45 of Lecture Notes in Computational Science and Engineering, Springer-Verlag,

Berlin, Heidelberg, New York, 2005, ch. 3, p. 89–116.

[2] Bavely C.A., Stewart G.W., An algorithm for computing reducing subspaces by block

diagonalization, SIAM J. Numer. Anal., 16, 2, 1979, p. 359–367.

[3] Wilkinson J.H., The Algebraic Eigenvalue Proble, Clarendon Press, Oxford, UK, 1965.

[4] Stewart, G.W., On the sensitivity of the eigenvalue problem Ax = λBx, SIAM J. Numer. Anal.,

9, 1972, p. 669–686.

[5] Wilkinson J.H., Kronecker's canonical form and the QZ algorithm, Lin. Alg. Appl., 28, 1979, p.

285–303.

[6] Demmel J., The condition number of equivalence transformations that block diagonalize matrix

pencils, SIAM J. Numer. Anal., 20, 1983, p. 599–610.

[7] Golub, G.H., Van Loan, C.F., Matrix Computations, The Johns Hopkins University Press,

Baltimore, MD, 4th edition, 2013.

[8] Kagström B., Westin L., Generalized Schur methods with condition estimators for solving the

generalized Sylvester equation, IEEE Trans. Auto. Contr., 34, 1989, p. 745–751.

[9] Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum

A., Hammarling S., McKenney A., Sorensen D., LAPACK Users’ Guide: Third Edition, Software ·

Environments · Tools Series, SIAM, Philadelphia, 1999.

[10] Benner P., Mehrmann V., Sima V., Van Huffel S., Varga A., SLICOT — A subroutine library in

systems and control theory, Datta B. N. (ed.), Applied and Computational Control, Signals, and

Circuits, Birkhäuser, Boston, MA, 1, 10, 1999, p. 499–539.

[11] Bartels R.H., Stewart G.W., Algorithm 432: Solution of the matrix equation AX + XB = C,

Comm. ACM, 15, 9, 1972, p. 820–826.

[12] Dongarra J.J., Du Croz J., Duff I.S., Hammarling S., Algorithm 679: A set of Level 3 Basic

Linear Algebra Subprograms, ACM Trans. Math. Softw., 16, 1990, p. 1–17, 18–28.

