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Abstract. Techniques for computing the block diagonal form for matrix pencils are 

presented. The computation starts by reducing the matrix pencil to a generalized Schur 

form using unitary transformations. The off-diagonal blocks are then successively 

annihilated by well-conditioned non-unitary transformations, using solutions of generalized 

Sylvester equations. The ultimate reduction to diagonal or quasi-diagonal form, with blocks 

of order 1 and 2, is usually impossible, since this could lead to very inaccurate results. The 

basic techniques try to increase the granularity by selecting appropriate eigenvalues and 

reordering them to improve the conditioning of the problem. For high order matrix pencils, 

with large and dense clusters of eigenvalues, these techniques spend much computing time 

unsuccessfully attempting to split such clusters. Incorporating clustering techniques into the 

block diagonalization process allows to detect hard to split subproblems and to accept 

larger diagonal blocks. Numerical results are presented illustrating the performance and 

effectiveness of these techniques. 

 

Keywords: descriptor system, linear multivariable systems, numerical methods, simulation, 

software. 

 

1. Introduction 

 

One important application in the analysis and design of a linear dynamical system 

is the computation of its response to various inputs, including simulated 

disturbances. Often, such a computation has to be performed many times. 

Therefore, it is important to be able to do such simulations as fast as possible. One 

approach to reduce the computational effort by a factor about two is to first 

transform the original system to a (generalized) Hessenberg or Schur form. This 

can be done using unitary equivalence transformations. But significantly much 

substantial speed improvement can be obtained using the block diagonal form, 

which decouples the state part of the system into smaller subsystems, preserving as 
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much as possible its dynamical behavior. This reduction, however, needs non-

unitary transformations. To ensure an adequate accuracy, the numerical condition 

of these transformations should be bounded. The reduction involves solution of 

(generalized) Sylvester equations. For large-scale systems, another approach is 

model reduction (see, e.g., [1] and the references therein), that reduces the order of 

a system, approximating its essential dynamics. The associated techniques differ 

from those for block diagonalization, but their aim is the same, namely, to allow 

faster further computations. 

When the orders of the diagonal blocks are small, powers of the transformed 

matrices can be computed easily, and this is useful to evaluate functions (defined 

by power series) of the original matrices [2]. The best reduced theoretical forms, 

like Jordan form of a matrix, or Kronecker form of a matrix pencil, are often not 

well determined numerically. Small perturbations of some matrix elements can 

make some blocks to split or coalesce [2]. In the second case, splitting such blocks 

may need very ill-conditioned transformation matrices. Although this usually 

happens for blocks with close eigenvalues, it may happen even for matrices with 

well separated eigenvalues. This is related to the sensitivity of the associated 

eigenvalues [3], [4]. 

Theoretically, the order of the diagonal blocks can be no smaller than the order of 

the blocks in the Kronecker canonical form [5]. In practice, they have to be larger, 

in order to limit the conditioning of the transformation matrices [6]. If there are 

clusters of close eigenvalues, then usually these eigenvalues cannot be separated by 

well-conditioned transformations, and it could be necessary to leave them in the 

same diagonl block. 

Consider a linear time-invariant system, 

                       𝐸𝜆(𝑥(𝑡)) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),   𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡),                   (1) 

where 𝐴, 𝐸 ∈ 𝑹𝑛×𝑛, 𝐵 ∈ 𝑹𝑛×𝑚, 𝐶 ∈ 𝑹𝑝×𝑛, 𝐷 ∈ 𝑹𝑝×𝑚, 𝑥(𝑡) ∈ 𝑹𝑛 is the state 

vector, 𝑦(𝑡) ∈ 𝑹𝑝 is the output vector, 𝑢(𝑡) ∈ 𝑹𝑚 is the input vector, and 𝜆(𝑥(𝑡)) 

is the differential operator, d𝑥(𝑡)/d𝑡, or the advance difference operator, 

𝜆(𝑥(𝑡)) = 𝑥(𝑡 + 1), for continuous- and discrete-time case, respectively. The 

input vector can include disturbance and control components, while the output 

vector can contain measured and regulated components. The matrix 𝐸 is singular, 

for instance, when model (1) includes algebraic constraints. Such systems are 

referred to as descriptor (or singular) systems. It is assumed in the sequel that the 

matrix pencil 𝜆𝐸 − 𝐴 is regular, that is, det(𝜆𝐸 − 𝐴) ≢ 0. This matrix pencil can 

be reduced to a simpler form, using equivalence transformations [7], which are also 

applied to 𝐵 and 𝐶, 

                             𝐴̃ = 𝑄𝑇𝐴𝑍,   𝐸̃ = 𝑄𝑇𝐸𝑍,   𝐵̃ = 𝑄𝑇𝐵,    𝐶̃ = 𝐶𝑍,                        (2) 

where 𝑄, 𝑍 ∈  𝑹𝑛×𝑛. In theory, the system (2) has exactly the same dynamical 

behavior as (1), but this is not true in practice, due to limited precision numerical 

computations. The best practical results can be obtained using unitary 
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transformations, more specifically, orthogonal, satisfying 𝑄𝑇𝑄 =  𝑄𝑄𝑇 = 𝐼𝑛  and 

𝑍𝑇𝑍 =  𝑍𝑍𝑇 = 𝐼𝑛, where 𝐼𝑛 is the identity matrix of order 𝑛. These transformations 

preserve the norm of any matrix on which they are applied, and the computed 

condition numbers of the original and transformed matrices are very close, since 

the singular values are minimally perturbed. In the complex case, the formulas are 

similar, but the transposition operator 𝑇 is replaced by the conjugate transpose 

operator, 𝐻. Any regular real matrix pencil 𝜆𝐸 − 𝐴 can be reduced via (2) to an 

equivalent one, 𝜆𝐸̃ − 𝐴̃, with theoretically the same spectrum, by orthogonal 

matrices 𝑄 and 𝑍, so that the real matrix 𝐸̃ is upper triangular and the real matrix 𝐴̃ 

is upper quasi-triangular, i.e., 𝐴̃ is block triangular, with 1 × 1 and 2 × 2 diagonal 

blocks. If the 1 × 1 and 2 × 2 diagonal blocks correspond to real and complex 

conjugate eigenvalues, respectively, the pair (𝐴̃, 𝐸̃) is said to be in a generalized 

(real) Schur form. In the complex case, the matrices 𝐴̃ and 𝐸̃ are both complex 

upper triangular. If the matrix 𝐸 is identity, then the matrix 𝐴 is reduced to (real) 

Schur form, 𝐴̃ = 𝑄𝑇𝐴𝑄, and 𝐵̃ and 𝐶̃ are defined by 𝐵̃ = 𝑄𝑇𝐵 , 𝐶̃ = 𝐶𝑄. 

The paper is organized as follows. Section 2 presents block diagonalization 

techniques. The real generalized case will be mainly considered, since the other 

cases are simpler. Section 3 deals with implementation details associated to the 

developed solvers. Section 4 shows some numerical results illustrating the 

performance of the generalized solver. Finally, Section 5 summarizes the 

conclusions.  

 

2. Block diagonalization techniques 

 

The algorithms for block diagonalization of matrix pencils start with data in 

generalized Schur form. For convenience, it will be assumed that 𝐴 and 𝐸 are 

already reduced to this form, and 𝐵 and 𝐶 are the corresponding matrices. The 

transformations which are further applied to 𝐴 and 𝐸 are optionally accumulated 

and finally applied to 𝐵 and 𝐶. 

The generalized Schur form can be recast to as 

                                     𝐴 = [
𝐴11 𝐴12

0 𝐴22
] ,   𝐸 = [

𝐸11 𝐸12

0 𝐸22
] ,                                   (3) 

where initially 𝐴11 and 𝐸11 are the first pair of diagonal blocks, of order 1, in the 

complex case, but 1 or 2, in the real case. An attempt is made to compute the 

following transformation matrices, 𝑋 and 𝑌, partitioned as 𝐴 and 𝐸, 

                                              𝑋 = [
𝐼 𝑉
0 𝐼

] ,   𝑌 = [
𝐼 𝑊
0 𝐼

] ,                                         (4) 

where 𝐼 are identity matrices of appropriate order, such that 

                            𝑋−1𝐴𝑌 = [
𝐴11 0

0 𝐴22
] , 𝑋−1𝐸𝑌 = [

𝐸11 0
0 𝐸22

]                          (5) 
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and the elements of 𝑋 and 𝑌 do not exceed, in magnitude, a given value 𝜏, 𝜏 > 1. 

A typical value for 𝜏 is 5000, but it can be as lower as 100 for problems with well-

conditioned spectra. The special structure of 𝑋 ensures that 𝑋−1 is easily obtained, 

since it has the same form as 𝑋, but 𝑉 is replaced by −𝑉. Using (4) in (5), it 

follows that 

      𝑋−1𝐴𝑌 = [
𝐼 −𝑉
0 𝐼

] [
𝐴11 𝐴12

0 𝐴22
] [

𝐼 𝑊
0 𝐼

]  = [
𝐴11 𝐴11𝑊 + 𝐴12 − 𝑉𝐴22

0 𝐴22
] ,   (6) 

and 𝑋−1𝐸𝑌 has a similar formula. The block diagonal form in (5) is obtained if 𝑉 

and 𝑊 satisfy the following generalized Sylvester equation [8] 

                       𝐴11𝑊 − 𝑉𝐴22 = −𝜎𝐴12 ,   𝐸11𝑊 − 𝑉𝐸22 = −𝜎𝐸12 ,                    (7) 

where 0 ≤ 𝜎 ≤ 1 is a scaling factor, used for instance by the LAPACK solver [9], 

to avoid overflow in the computations. Usually, 𝜎 = 1, and smaller values indicate 

possible ill-conditioning.  

If all elements of 𝑉 and 𝑊 have magnitude less than or equal to 𝜏, the blocks 𝐴11 

and 𝐸11 are accepted and the matrices then have the following form 

𝐴 = [

𝐴11 0 0

0 𝐴̂11 𝐴̂12

0 0 𝐴̂22

],   [
𝐴̂11 𝐴̂12

0 𝐴̂22

] ≔  𝐴22,    

                            𝐸 = [

𝐸11 0 0

0 𝐸̂11 𝐸̂12

0 0 𝐸̂22

] ,   [
𝐸̂11 𝐸̂12

0 𝐸̂22

] : = 𝐸22 .                          (8) 

The new transformation matrices will act on the part with hat accents, that is, their 

form will be 

                                     𝑋̂ = [
𝐼 0 0
0 𝐼 𝑉̂
0 0 𝐼

],   𝑌̂ = [
𝐼 0 0
0 𝐼 𝑊̂
0 0 𝐼

] ,                                 (9) 

where 𝑉̂ and 𝑊̂ will solve, if possible, the equations in (7) for submatrices with hat 

accents. Hence, the essential part of each individual transformation has the form in 

(4). If 𝑉̂ and 𝑊̂ are accepted, then the current transformation matrices will be 𝑋 ≔

𝑋𝑋̂ and 𝑌 ≔ 𝑌𝑌̂, with 

𝑋 = [
𝐼 𝑉11 𝑉12

0 𝐼 0
0 0 𝐼

] [
𝐼 0 0
0 𝐼 𝑉̂
0 0 𝐼

] = [
𝐼 𝑉11 𝑉11𝑉̂ + 𝑉12

0 𝐼 𝑉̂
0 0 𝐼

],   [𝑉11 𝑉12] ≔ 𝑉,  
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and similarly for 𝑌. It follows that updating 𝑋 and 𝑌 for new individual 

transformations only involves the matrix operations of the form 𝑉11𝑉̂ + 𝑉12 and 

𝑊11𝑊̂ + 𝑊12. 

But if any of the elements of 𝑉 and 𝑊 exceeds 𝜏 in magnitude, or if the linear 

system corresponding to (7) is (almost) singular (that happens when the pairs (𝐴11, 

𝐸11) and (𝐴22, 𝐸22) have common or very close eigenvalues), the blocks 𝐴11 and 

𝐸11 are not accepted, since the transformations 𝑋 and 𝑌 are considered to be too ill-

conditioned. However, it could be possible to extend 𝐴11 and 𝐸11 by including 

other diagonal block(s) from 𝐴22 and 𝐸22 , and find acceptable transformations. 

There are strategies to choose suitable blocks so that the conditioning of the 

extended problem is acceptable. One such strategy finds a pair of 1 × 1 (or 2 × 2) 

diagonal blocks of 𝐴22 and 𝐸22 whose eigenvalue(s) are the closest to the mean of 

eigenvalues of the pair (𝐴11, 𝐸11). This block pair is moved by orthogonal 

equivalence transformations to the leading position of 𝐴22 and 𝐸22 [7]. The moved 

diagonal blocks are then appended to 𝐴11 and 𝐸11, increasing their size by 1 (or 2), 

and another attempt is made to solve the corresponding generalized Sylvester 

equation (7). If the new transformation matrices have all elements with magnitude 

at most 𝜏, the current blocks 𝐴11 and 𝐸11 are accepted, the corresponding matrices 

𝑋 and 𝑌 postmultiply the current transformation matrices and the same procedure 

is applied to the blocks 𝐴22 and 𝐸22. Other block selection strategies will be 

discussed in Section 3. This approach can be seen as being of „bottom-up” type. 

Optionally, the transformations matrices can be initialized on input to the solver, 

and they can be updated during the block diagonalization process.  This option is 

useful, for instance, when the original system matrices 𝐴 and 𝐸 are not in a 

generalized Schur form; in this case, 𝑋 and 𝑌 are initialized by the left and right, 

respectively, orthogonal matrices generated in the reduction to this Schur form. At 

the end of the diagonalization, 𝑋 and 𝑌 will contain the matrices that would reduce 

the original data 𝐴 and 𝐸 to the block diagonal form. Therefore, 𝑋 and 𝑌 can then 

be applied to 𝐵 and 𝐶, ensuring the equivalence between the original and the 

reduced system.  

The block diagonalization solver in the SLICOT Library [10], developed by the 

author, delivers the transpose of the final matrix 𝑋. This ensures the compatibility 

with the reduction to the generalized Schur form, performed by the LAPACK 

routines, since the reduced matrices are obtained in the same form: 𝐴̃ =
𝑄𝑇𝐴𝑍,   𝐸̃ = 𝑄𝑇𝐸𝑍 and 𝐴̃ = 𝑋𝑇𝐴𝑌,   𝐸̃ = 𝑋𝑇𝐸𝑌, for Schur reduction and block 

diagonalization, respectively. In each successful step of the block diagonalization, 

only the rows and columns involved in that step need to be updated in 𝑋 and 𝑌. 

(Note that the MATLAB command qz returns the matrix 𝑄𝑇 instead of 𝑄.) 

In the standard case, only the matrix 𝐴 has to be transformed, 𝑊 = 𝑉, and 𝑉 is 

obtained by solving a Sylvester equation [11], given by the first formula in (7) with 

𝑊 = 𝑉. Adaptations of the solvers for standard Sylvester equation [11] and 

generalized Sylvester equation [8], for controlling the magnitude of the individual 

elements of the computed solution [2], are used to obtain 𝑉 and 𝑊. 
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The algorithm usually requires O(𝑛3) operations, but O(𝑛4) are possible in the 

worst case, when the matrix pencil cannot be block diagonalized by well-

conditioned transformations. The individual non-orthogonal transformation 

matrices used in the reduction of 𝐴 and 𝐸 to a block diagonal form have condition 

numbers of the order 𝜏. This does not guarantee that their product is well-

conditioned enough. But it can be ensured that the transformations 𝑋 and 𝑌 have 

condition numbers, cond(𝑋) and cond(𝑌), respectively, that are not much latger 

than 𝜏, where cond(𝑀) ≔  ‖𝑀‖‖𝑀−1‖ for any square matrix 𝑀. This can be 

obtained by scaling the rows and columns of each individual transformation 

matrices like in (9), so that ‖𝑋𝑖,:‖ = 1 and ‖𝑌:.𝑖‖ = 1. Diagonal scaling matrices, 

𝐷𝑋 and 𝐷𝑌 are used, where 𝐷𝑋 = diag(𝐼, 𝐷𝑉) and 𝐷𝑖𝑖
𝑉 = 1/(1 + ‖𝑉𝑖,:‖

2
)1/2 for 

each row 𝑖 of 𝑉, and similarly for 𝑌. If ‖𝑉‖, hence ‖𝑋‖ are large, which would 

imply an ill-conditioned matrix 𝑋, it follows that ‖𝐷𝑋𝑋‖ ≈ 1 and ‖(𝐷𝑋𝑋)−1‖ ≈

√1 + ‖𝑉‖2 ≈ ‖𝑉‖, hence cond(𝐷𝑋𝑋) =  ‖𝐷𝑋𝑋‖‖(𝐷𝑋𝑋)−1‖ ≈ ‖𝑉‖; without this 

normalization, one would obtain cond(𝑋) ≈ ‖𝑉‖2. Clearly, the scaling used for 

normalization is also applied to the corresponding parts of 𝐴 and 𝐸 in order to 

ensure the equivalence between the original and the reduced matrix pencils. 

Normalization of the columns of 𝑌 which are no longer modified, and updating of 

𝐴 and 𝐸, is done during the reduction process. Normalization of all columns of 𝑋 

(not rows, due to the computation of the transposed matrix), and the corresponding 

update of 𝐴 and 𝐸 are done at the end of the computational process. 

 

3. Implementation issues 

 

The computation of block diagonal forms for matrices and matrix pencils, with real 

or complex elements, can be performed using subroutines from the SLICOT 

Library [10], available on GitHub, https://github.com/SLICOT/SLICOT-

Reference. The data matrices are assumed to be in Schur or generalized Schur 

form, which can be obtained by LAPACK subroutines. There are options to specify 

the desired strategy and the bound 𝜏 on the magnitude of the elements of the 

individual transformations. The tolerance 𝜃, used by the strategies for selecting the 

blocks to be moved, can be specified, but a default value can be set instead. The 

optimal size of the real working array can be computed by the generalized solver 

using a special call with this size set to −1; the returned value can then be given as 

input argument in a second solver call. The use of this feature could reduce the 

computing time for systems with large order, due to calls to the needed efficient 

BLAS 3 routines [12], instead of the slower, but some memory saving BLAS 2 

routines. To conserve memory, at each successful step of the reduction, the 

matrices 𝑉 and 𝑊 are stored in the memory space for 𝐴12 and 𝐸12. However, 𝐴12 

and 𝐸12 have to be saved before calling the generalized Sylvester solver, since it 

may use this memory space before an element of magnitude larger than 𝜏 is found; 

in such a case the calculations must be redone for a larger block pair, that should 

include the previous 𝐴12 and 𝐸12. Actually, 𝐴12
𝑇  and 𝐸12

𝑇  are saved in the 
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corresponding zero lower triangular part of 𝐴 and 𝐸, respectively. After a 

successful reduction step and updating 𝑋 and 𝑌 (if desired), the space for 𝐴12, 𝐸12, 

𝐴12
𝑇  and 𝐸12

𝑇  is set to zero. 

The current block diagonalization routines included in SLICOT do not use 

advanced clustering information. Several strategies are available for selecting a 

new block pair to be added to the already reduced leading block diagonal form. 

The desired strategy is chosen by specifying an input argument, SORT, of the 

routine. The „closest to the mean” strategy, discussed in Section 2, is selected by 

setting SORT = 'N'. In a variation of this strategy, used by setting SORT = 'S', the 

diagonal blocks of the generalized real Schur form are reordered before each step 

of the reduction, so that each cluster of generalized eigenvalues, defined as 

specified in the description of the tolerance 𝜃 below, appears in adjacent blocks. 

The blocks for each cluster are merged together, and the procedure described in 

Section 2 is applied to the larger blocks. Using the option SORT =  'S' will usually 

provide better efficiency than the standard option (SORT =  'N'), proposed in [2], 

because there could be no or few unsuccessful attempts to compute individual 

transformation matrices 𝑋 and 𝑌 of the form (4) or (9). However, the resulting 

dimensions of the blocks are usually larger; this could make subsequent 

calculations less efficient. 

For other two strategies, chosen by setting SORT =  'C' or 'B', the procedure is 

similar to that for SORT =  'N' or 'S', respectively, but the blocks of 𝐴22 and 𝐸22 

whose eigenvalue(s) is (are) the closest to those of (𝐴11, 𝐵11) (not to their mean) 

are selected and moved to the leading position of 𝐴22 and 𝐸22. This is called the 

„closest-neighbour” strategy.  

If SORT is set to 'S' or 'B', the tolerance 𝜃 is used for reordering the diagonal 

blocks of the block upper triangular matrix pair. If 𝜃 > 0, then the given value of 𝜃 

is used as an absolute tolerance: a pair of blocks 𝑖 and a temporarily fixed pair of 

blocks 𝛼 (the first pair of blocks of the current trailing pair of submatrices to be 

reduced) are considered to belong to the same cluster if their eigenvalues satisfy 

the following „distance” condition |𝜇𝛼 − 𝜇𝑖| ≤ 𝜃, where 𝜇𝛼 and 𝜇𝑖 denote the 

eigenvalues of two block pairs. If 𝜃 < 0, then the given value of 𝜃 is used as a 

relative tolerance: the pairs of blocks 𝑖 and 𝛼 are considered to belong to the same 

cluster if their eigenvalues satisfy, for finite eigenvalues 𝜇𝑗, |𝜇𝛼 − 𝜇𝑖| ≤ |𝜃| × 

 max{ |𝜇𝑗|, 𝑗 = 1, … , 𝑛}. If 𝜃 = 0, then an implicitly computed, default tolerance, 

defined by 𝜃 = 𝜀𝑀
1/4

 is used instead, as a relative tolerance, where 𝜀𝑀 is the 

machine precision, 𝜀𝑀 ≈ 2.22 × 10−16. The approximate symmetric chordal 

metric is used as „distance” of two complex, possibly infinite numbers, 𝑥 and 𝑦. 

This metric is given by the formula 

                                       𝑑(𝑥, 𝑦) = min (|𝑥 − 𝑦|, |
1

𝑥
−

1

𝑦
|),                                   (10) 

taking into account the special cases of infinite or NaN values. If SORT = 'N' or 

'C', the tolerance 𝜃 is not used. 
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These bottom-up strategies are very efficient for matrix pencils with relatively 

small order and well separated eigenvalues, in which case the solver often succeeds 

to obtain diagonal blocks of order at most two. For large order problems with 

clustered eigenvalues, the solution time can be high, due to the possibility to have a 

big number of unsuccessful attempts to split the blocks. A preliminary analysis of 

the clustered structure of the spectrum, followed by an appropriate reordering of 

the eigenvalues, could improve the efficiency. Specifically, starting by the most 

separated eigenvalues, the solver could quickly decouple them, leaving to the end 

all possibly big clusters of eigenvalues. Few failed attempts to split such a cluster 

could signal that there is no reason to continue the computations and therefore, 

finish the process with one or more large blocks. These strategies could be 

considered as being of „top-down” type. In implementation, the 𝑛𝑝(𝑛𝑝 − 1)/2 

pairwise distances between all 𝑛𝑝 eigenvalues with nonnegative imaginary parts 

are computed, since the eigenvalues with negative imaginary parts should be 

considered together with their complex conjugate counterparts. Euclidean distance 

is used if there are only finite eigenvalues; otherwise, chordal metric (10) can be 

computed, in order to deal in the same way with finite and infinite eigenvalues. 

(Alternatively, all infinite eigenvalues can be included in the same cluster and can 

be separated from the beginning.) The distance information is used to build a 

linkage matrix, which shows how the eigenvalues should be grouped into clusters. 

The size of this matrix is (𝑛𝑝 − 1) × 3. The third column contains a selected list of 

distances, in decreasing order, while the first two columns specify the objects 

which are grouped together into binary clusters. The objects are eigenvalues or 

detected groups of close eigenvalues. The newly formed objects are linked together 

and to other objects into bigger clusters, until all 𝑛𝑝 eigenvalues are linked in a 

binary tree. The clusters that contain complex eigenvalues are extended with the 

corresponding eigenvalues with negative imaginary parts; the eigenvalues in a 

complex conjugate pair appear successively, with eigenvalue having positive 

imaginary part in the first position. The number of clusters to be considered can be 

specified. This number should be smaller than 𝑛𝑝, possibly much smaller. 

 

4. Numerical results 

 

Extensive testing has been performed to evaluate the standard and generalized 

block diagonalization solvers. The computations have been done in double 

precision on an Intel Core i7-3820QM portable computer (2.7 GHz, 16 GB RAM). 

Some results obtained with the generalized solver are presented below. An 

executable MEX-file has been built using the solver source code, SLICOT routines 

and MATLAB-provided optimized LAPACK and BLAS routines.  

Example 1. Consider first a random example generated using the following 

MATLAB commands 

    A = rand( n );  E = rand( n );   p = 10^3*rand( n, 1 );  q = rand( n, 1 )/10^2;    

    P = diag( p );  Q = diag( q );   A = P*A*Q;  E = P*E*Q; 
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The random sequence has been initialized using the command rng( 'default' ), for 

reproductibility of the results. The executable solver has been called with all four 

options for SORT, with either original matrices or in their generalized Schur form, 

and with transformation matrices computed or not. Hence, there are 16 calls for 

each value of 𝑛. For 𝑛 = 50, 𝜏 = 100, the maximum block size for all calls has 

been 2, and the total CPU time has been 0.079542 s (seconds), resulting a mean 

time of 0.0049714 s. The mean and standard deviation of the 24 relative errors 

between initial and final eigenvalues (16 errors) and between the initial and 

transformed matrix pairs (8 errors) have been 2.1649e-16 and 7.56342e-17, 

respectively. The relative errors are computed as follows 

     𝑒𝐴 = ‖𝑋𝑇𝐴̃𝑌 − 𝐴̂‖/max (1, ‖𝐴̃‖),   𝑒𝐸 = ‖𝑋𝑇𝐸̃𝑌 − 𝐸̂‖/max (1, ‖𝐸̃‖),    

                                      𝑒𝜇 = ‖𝜇̃ − 𝑃𝜇̂‖/max (1, ‖𝜇̃‖),                                       (11) 

where 𝑃 is a permutation matrix (chosen to reorder 𝜇̂ in agreement to 𝜇̃), and the 

variables with tilde and hat accents correspond to the generalized Schur form and 

the computed results, respectively.  

For 𝑛 = 100, 𝜏 = 100, the solver could not split the spectrum, so the maximum 

block size for all calls has been 100. The total CPU time has been 0.565525 s and 

its mean value 0.035345 s. The mean and standard deviation of the relative errors 

have been 1.9846e-15 and 2.2303e-15, respectively. The spectrum of the matrix 

pencil is shown in Fig.1. Although there are several well separated eigenvalues, 

these could not be split. However, using 𝜏 = 5000 for the same example, a perfect 

block diagonalization is obtained, that is, the number of blocks of size 2 equals the 

number of complex conjugate eigenvalues. The total CPU time has been 0.25866 s, 

resulting a mean time of 0.016166 s. The mean and standard deviation of all 24 

relative errors in (11) have been 1.3076e-16 and 5.8876e-17, respectively. A 

similar behavior also appears for 𝜏 = 100, but without scaling of 𝐴 and 𝐸 in the 

MATLAB commands above. 

 
Fig.1. The spectrum of a randomly generated matrix pencil of order 100. 
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Using several strategies for a preliminary reordering of the eigenvalues μ̃, for 6 

clusters (of eigenvalues with nonnegative imaginary parts), perfect block 

diagonalization results have been obtained, and the CPU times for those strategies 

varied between 0.0056 s and 0.011479 s. Moreover, the same results have been 

produced even with τ = 100, when the CPU times varied between 0.004889 s and 

0.012211 s. Therefore, the mean CPU time has been reduced by a factor of about 2 

compared to the results using botom-up strategies. The performance statistics are 

summarized in Table 1, where 𝑏 denotes the vector of diagonal block orders and 

𝑒 ∈ 𝐑24 contains the eight values max(𝑒𝐴, 𝑒𝐸) and 16 values 𝑒𝜇 for all 16 solver 

calls. 

 

Table 1. Example 1 performance statistics. 

𝑛 𝜏 max(𝑏) CPU time (s) mean(CPU time) mean(𝑒) std(𝑒) 

50 100 2 0.079542 0.0049714 2.1649e-16 7.5634e-17 

100 100 100 0.565525 0.035345 1.9846e-15 2.2303e-15 

100 5000 2 0.25866 0.016166 1.3076e-16 5.8876e-17 

 

Example 2. A matrix pencil of order 999 has been investigated. It has 107 real are 

446 complex conjugate eigenvalues. The eigenvalues with nonnegative imaginary 

parts are displayed in Fig.2. Without using clustering information, the block 

diagonalization solver, with SORT = ’N’ and 𝜏 = 5000, obtained a solution with 

135 blocks in about 62.68 s. The largest block, of order 734, appeared in the 89-th 

position; there are three 1 × 1 and 131 2 × 2 diagonal blocks. The remaining 104 

real eigenvalues are included in the largest block. The same block structure and 

comparable CPU times have been recorded for the other values of the parameter 

SORT. The existence of such a large block is due to a great number of badly 

separated eigenvalues, both real and complex conjugate.  

 

Fig. 2. The eigenvalues with nonnegative imaginary parts of a matrix pencil of order 999. 
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To investigate the advantages of exploiting the clustering information, several 

values for the number of clusters have been tried. The best results have been 

obtained for 120 clusters. There are 141 diagonal blocks, with the largest block, of 

order 719, appearing in the last position; the other 140 diagonal blocks are 2 × 2. 

All real eigenvalues are included in the largest block. The total CPU time for 

reordering the eigenvalues 𝜇̃ and block diagonalization has been 4.6905 s, that is, 

this execution was 13.36 times faster than the execution without using clustering 

information. Moreover, more blocks have been found, and the largest block has a 

smaller order. This illustrates the benefits of considering clustering techniques in 

the block diagonalization algorithm. The performance statistics are summarized in 

Table 2. The numbers of  1 × 1 and 2 × 2 blocks are also given.  

Table 2. Example 2 performance statistics. 

size(𝑏) max(𝑏) position # 1 × 1 # 2 × 2 CPU time (s) # clusters 

135 734  89 3 131 62.68 - 

141 719 141 0 140  4.69 120 

 

5. Conclusions 

 

Techniques for computing the block diagonal form for matrix pencils are 

presented. Such a form is very useful, for instance, for fast simulation of linear 

time-invariant descriptor systems, since their state dynamics can often be very well 

approximated by a series of decoupled subsystems of much lower sizes. Starting by 

reducing the matrix pencil to a generalized Schur form by unitary transformations, 

the off-diagonal blocks are then successively annihilated by well-conditioned non-

unitary transformations, using solutions of generalized Sylvester equations. The 

ultimate reduction to diagonal or quasi-diagonal form, with blocks of order 1 (and 

2, in the real case), is often impossible, since this could drastically diminish the 

accuracy of the results. The basic techniques attempt to increase the granularity as 

much as possible, by selecting appropriate eigenvalues and reordering them to 

improve the conditioning of the problem. For high order matrix pencils, with large 

and dense clusters of eigenvalues, these techniques may spend much computing 

time unsuccessfully trying to split such clusters into smaller ones. Further 

investigation will be devoted for incorporating advanced clustering techniques into 

the block diagonalization process for detecting subproblems hard to split, and 

therefore quickly accepting larger order diagonal blocks. Numerical results are 

presented which illustrate the performance and effectiveness of these techniques; 

for instance, using clustering information the computing effort was reduced by a 

factor bigger than 10 for a matrix pencil of order 999. 
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