Journal of Engineering Sciences and Innovation
Volume 10, Issue 2 /2025, p. 221 - 232
http://doi.org/10.56958/jesi.2025.10.2.221

Technical Sciences
Academy of Romania F. Electrical, Electronics Engineering,
www.jesi.astr.ro Computer Sciences and Engineering
Received 15 January 2025 Accepted 10 June 2025

Received in revised form 14 May 2025

Performance improvement in computing the
block diagonal form of matrix pencils

VASILE SIMA®

Technical Sciences Academy of Romania, Bucharest, Romania

Abstract. Techniques for computing the block diagonal form for matrix pencils are
presented. The computation starts by reducing the matrix pencil to a generalized Schur
form using unitary transformations. The off-diagonal blocks are then successively
annihilated by well-conditioned non-unitary transformations, using solutions of generalized
Sylvester equations. The ultimate reduction to diagonal or quasi-diagonal form, with blocks
of order 1 and 2, is usually impossible, since this could lead to very inaccurate results. The
basic techniques try to increase the granularity by selecting appropriate eigenvalues and
reordering them to improve the conditioning of the problem. For high order matrix pencils,
with large and dense clusters of eigenvalues, these techniques spend much computing time
unsuccessfully attempting to split such clusters. Incorporating clustering techniques into the
block diagonalization process allows to detect hard to split subproblems and to accept
larger diagonal blocks. Numerical results are presented illustrating the performance and
effectiveness of these techniques.

Keywords: descriptor system, linear multivariable systems, numerical methods, simulation,
software.

1. Introduction

One important application in the analysis and design of a linear dynamical system
is the computation of its response to various inputs, including simulated
disturbances. Often, such a computation has to be performed many times.
Therefore, it is important to be able to do such simulations as fast as possible. One
approach to reduce the computational effort by a factor about two is to first
transform the original system to a (generalized) Hessenberg or Schur form. This
can be done using unitary equivalence transformations. But significantly much
substantial speed improvement can be obtained using the block diagonal form,
which decouples the state part of the system into smaller subsystems, preserving as

*Correspondence address: vasilesima@ymail.com

http://www.jesi.astr.ro/

222 Sima Vasile / Performance improvement in computing the block diagonal form ...

much as possible its dynamical behavior. This reduction, however, needs non-
unitary transformations. To ensure an adequate accuracy, the numerical condition
of these transformations should be bounded. The reduction involves solution of
(generalized) Sylvester equations. For large-scale systems, another approach is
model reduction (see, e.g., [1] and the references therein), that reduces the order of
a system, approximating its essential dynamics. The associated techniques differ
from those for block diagonalization, but their aim is the same, namely, to allow
faster further computations.

When the orders of the diagonal blocks are small, powers of the transformed
matrices can be computed easily, and this is useful to evaluate functions (defined
by power series) of the original matrices [2]. The best reduced theoretical forms,
like Jordan form of a matrix, or Kronecker form of a matrix pencil, are often not
well determined numerically. Small perturbations of some matrix elements can
make some blocks to split or coalesce [2]. In the second case, splitting such blocks
may need very ill-conditioned transformation matrices. Although this usually
happens for blocks with close eigenvalues, it may happen even for matrices with
well separated eigenvalues. This is related to the sensitivity of the associated
eigenvalues [3], [4].

Theoretically, the order of the diagonal blocks can be no smaller than the order of
the blocks in the Kronecker canonical form [5]. In practice, they have to be larger,
in order to limit the conditioning of the transformation matrices [6]. If there are
clusters of close eigenvalues, then usually these eigenvalues cannot be separated by
well-conditioned transformations, and it could be necessary to leave them in the
same diagonl block.

Consider a linear time-invariant system,

EA(x(t)) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(p), (1)

where A,E € R™", B € R™™, C € RP*™, D € RP*™, x(t) € R" is the state
vector, y(t) € R? is the output vector, u(t) € R™ is the input vector, and A(x(t))
is the differential operator, dx(t)/dt, or the advance difference operator,
A(x(t)) =x(t + 1), for continuous- and discrete-time case, respectively. The
input vector can include disturbance and control components, while the output
vector can contain measured and regulated components. The matrix E is singular,
for instance, when model (1) includes algebraic constraints. Such systems are
referred to as descriptor (or singular) systems. It is assumed in the sequel that the
matrix pencil AE — A is regular, that is, det(AE — A) % 0. This matrix pencil can
be reduced to a simpler form, using equivalence transformations [7], which are also
applied to B and C,

A=QTAz, E=QTEzZ, B=Q"™B, C=CZ, (2)

where Q, Z € R™™. In theory, the system (2) has exactly the same dynamical
behavior as (1), but this is not true in practice, due to limited precision numerical
computations. The best practical results can be obtained using unitary

Journal of Engineering Sciences and Innovation, Vol. 10, Issue 2 /2025 223

transformations, more specifically, orthogonal, satisfying QTQ = QQT =1, and
777 = 7ZT = I,,, where I, is the identity matrix of order n. These transformations
preserve the norm of any matrix on which they are applied, and the computed
condition numbers of the original and transformed matrices are very close, since
the singular values are minimally perturbed. In the complex case, the formulas are
similar, but the transposition operator T is replaced by the conjugate transpose
operator, H. Any regular real matrix pencil AE — A can be reduced via (2) to an
equivalent one, AE — A, with theoretically the same spectrum, by orthogonal
matrices Q and Z, so that the real matrix E is upper triangular and the real matrix A
is upper quasi-triangular, i.e., 4 is block triangular, with 1 X 1 and 2 X 2 diagonal
blocks. If the 1 X 1 and 2 X 2 diagonal blocks correspond to real and complex
conjugate eigenvalues, respectively, the pair (4, E) is said to be in a generalized
(real) Schur form. In the complex case, the matrices A and E are both complex
upper triangular. If the matrix E is identity, then the matrix A is reduced to (real)
Schur form, A = QTAQ, and B and C are defined by B = Q"B , € = CQ.

The paper is organized as follows. Section 2 presents block diagonalization
techniques. The real generalized case will be mainly considered, since the other
cases are simpler. Section 3 deals with implementation details associated to the
developed solvers. Section 4 shows some numerical results illustrating the
performance of the generalized solver. Finally, Section 5 summarizes the
conclusions.

2. Block diagonalization techniques

The algorithms for block diagonalization of matrix pencils start with data in
generalized Schur form. For convenience, it will be assumed that A and E are
already reduced to this form, and B and C are the corresponding matrices. The
transformations which are further applied to A and E are optionally accumulated
and finally applied to B and C.
The generalized Schur form can be recast to as

[Au A12] E = [En E12]

, 3
Ay’ Eyy)

where initially A;; and E;, are the first pair of diagonal blocks, of order 1, in the
complex case, but 1 or 2, in the real case. An attempt is made to compute the
following transformation matrices, X and Y, partitioned as A and E,

)

where I are identity matrices of appropriate order, such that

A E
=l = g ®

224 Sima Vasile / Performance improvement in computing the block diagonal form ...

and the elements of X and Y do not exceed, in magnitude, a given value 7, 7 > 1.
A typical value for T is 5000, but it can be as lower as 100 for problems with well-
conditioned spectra. The special structure of X ensures that X1 is easily obtained,
since it has the same form as X, but V is replaced by —V. Using (4) in (5), it
follows that

v [=V [An A12]1 w _[An A11W+A12—VA22]
xav=[o 1% Ay b 11=1% Ay, » (6)

and X 1EY has a similar formula. The block diagonal form in (5) is obtained if V
and W satisfy the following generalized Sylvester equation [8]

AW =VAy; = —0A1,, EqiW —VE;; = —0E;;, (7

where 0 < o <1 is a scaling factor, used for instance by the LAPACK solver [9],
to avoid overflow in the computations. Usually, ¢ = 1, and smaller values indicate
possible ill-conditioning.

If all elements of V and W have magnitude less than or equal to 7, the blocks A4
and E;; are accepted and the matrices then have the following form

A 0 0]
A=(0 Ay Az, 81 A12 = Ay,
| O 0 A, 22
Ea 00 0] o
E = 0 Ell Elz , 81 Elz = E22 . (8)
| 0 0 EZZ - 22

The new transformation matrices will act on the part with hat accents, that is, their
form will be

[l o0y I 00
X=10 1 I7,Y=[0 I VT/].)
0 0 I 0 0 1

where 7 and W will solve, if possible, the equations in (7) for submatrices with hat
accents. Hence, the essential part of each individual transformation has the form in
(4). If V and W are accepted, then the current transformation matrices will be X :=
XX andY =YY, with

I Vi V1[I 0 0 I Vi, Vi V4V,
X=10 I ollo 1 V=0 1 1% , [Vin Vig] =V,
0 0 I 10 0 1 0 0 I

Journal of Engineering Sciences and Innovation, Vol. 10, Issue 2 /2025 225

and similarly for Y. It follows that updating X and Y for new individual
transformations only involves the matrix operations of the form Vy;V + V;, and
Wi W + Wy,

But if any of the elements of IV and W exceeds 7 in magnitude, or if the linear
system corresponding to (7) is (almost) singular (that happens when the pairs (44,
E;1) and (A,,, E;,) have common or very close eigenvalues), the blocks A;; and
E;; are not accepted, since the transformations X and Y are considered to be too ill-
conditioned. However, it could be possible to extend A;; and E;; by including
other diagonal block(s) from A,, and E,,, and find acceptable transformations.
There are strategies to choose suitable blocks so that the conditioning of the
extended problem is acceptable. One such strategy finds a pair of 1 X 1 (or 2 X 2)
diagonal blocks of A,, and E,, whose eigenvalue(s) are the closest to the mean of
eigenvalues of the pair (A4;q1, E;11)- This block pair is moved by orthogonal
equivalence transformations to the leading position of A,, and E,5 [7]. The moved
diagonal blocks are then appended to 4,4 and E;, increasing their size by 1 (or 2),
and another attempt is made to solve the corresponding generalized Sylvester
equation (7). If the new transformation matrices have all elements with magnitude
at most 7, the current blocks A;; and E;; are accepted, the corresponding matrices
X and Y postmultiply the current transformation matrices and the same procedure
is applied to the blocks A,, and E,,. Other block selection strategies will be
discussed in Section 3. This approach can be seen as being of ,,bottom-up” type.
Optionally, the transformations matrices can be initialized on input to the solver,
and they can be updated during the block diagonalization process. This option is
useful, for instance, when the original system matrices A and E are not in a
generalized Schur form; in this case, X and Y are initialized by the left and right,
respectively, orthogonal matrices generated in the reduction to this Schur form. At
the end of the diagonalization, X and Y will contain the matrices that would reduce
the original data A and E to the block diagonal form. Therefore, X and Y can then
be applied to B and C, ensuring the equivalence between the original and the
reduced system.

The block diagonalization solver in the SLICOT Library [10], developed by the
author, delivers the transpose of the final matrix X. This ensures the compatibility
with the reduction to the generalized Schur form, performed by the LAPACK
routines, since the reduced matrices are obtained in the same form: A =
QTAZ, E=QTEZ and A= XTAY, E = XTEY, for Schur reduction and block
diagonalization, respectively. In each successful step of the block diagonalization,
only the rows and columns involved in that step need to be updated in X and Y.
(Note that the MATLAB command gz returns the matrix Q7 instead of Q.)

In the standard case, only the matrix A has to be transformed, W =V, and V is
obtained by solving a Sylvester equation [11], given by the first formula in (7) with
W =V. Adaptations of the solvers for standard Sylvester equation [11] and
generalized Sylvester equation [8], for controlling the magnitude of the individual
elements of the computed solution [2], are used to obtain V and W.

226 Sima Vasile / Performance improvement in computing the block diagonal form ...

The algorithm usually requires O(n3) operations, but O(n*) are possible in the
worst case, when the matrix pencil cannot be block diagonalized by well-
conditioned transformations. The individual non-orthogonal transformation
matrices used in the reduction of A and E to a block diagonal form have condition
numbers of the order 7. This does not guarantee that their product is well-
conditioned enough. But it can be ensured that the transformations X and Y have
condition numbers, cond(X) and cond(Y), respectively, that are not much latger

than 7, where cond(M) := |[M||||[M~1|| for any square matrix M. This can be
obtained by scaling the rows and columns of each individual transformation
matrices like in (9), so that ||X;.|| = 1 and ||Y,;|| = 1. Diagonal scaling matrices,

Dy and Dy are used, where Dy = diag(I,D") and D} =1/(1 + ||VL-,:||2)1/2 for
each row i of V, and similarly for Y. If ||V||, hence ||X|| are large, which would
imply an ill-conditioned matrix X, it follows that ||[DyX|| = 1 and ||(DxX)~1|| =
J1+ V12 = ||V]], hence cond(DyX) = ||DxX|III(DxX)~ || = ||V]||; without this
normalization, one would obtain cond(X) = ||V||2. Clearly, the scaling used for
normalization is also applied to the corresponding parts of A and E in order to
ensure the equivalence between the original and the reduced matrix pencils.
Normalization of the columns of Y which are no longer modified, and updating of
A and E, is done during the reduction process. Normalization of all columns of X
(not rows, due to the computation of the transposed matrix), and the corresponding
update of A and E are done at the end of the computational process.

3. Implementation issues

The computation of block diagonal forms for matrices and matrix pencils, with real
or complex elements, can be performed using subroutines from the SLICOT
Library [10], available on GitHub, https://github.com/SLICOT/SLICOT-
Reference. The data matrices are assumed to be in Schur or generalized Schur
form, which can be obtained by LAPACK subroutines. There are options to specify
the desired strategy and the bound 7 on the magnitude of the elements of the
individual transformations. The tolerance 8, used by the strategies for selecting the
blocks to be moved, can be specified, but a default value can be set instead. The
optimal size of the real working array can be computed by the generalized solver
using a special call with this size set to —1; the returned value can then be given as
input argument in a second solver call. The use of this feature could reduce the
computing time for systems with large order, due to calls to the needed efficient
BLAS 3 routines [12], instead of the slower, but some memory saving BLAS 2
routines. To conserve memory, at each successful step of the reduction, the
matrices V and W are stored in the memory space for A;, and E;,. However, 4,
and E;, have to be saved before calling the generalized Sylvester solver, since it
may use this memory space before an element of magnitude larger than t is found;
in such a case the calculations must be redone for a larger block pair, that should
include the previous A;, and E;,. Actually, AT, and ET, are saved in the

Journal of Engineering Sciences and Innovation, Vol. 10, Issue 2 /2025 227

corresponding zero lower triangular part of A and E, respectively. After a
successful reduction step and updating X and Y (if desired), the space for A4,, Ey5,
AT, and ET, is set to zero.

The current block diagonalization routines included in SLICOT do not use
advanced clustering information. Several strategies are available for selecting a
new block pair to be added to the already reduced leading block diagonal form.
The desired strategy is chosen by specifying an input argument, SORT, of the
routine. The ,,closest to the mean” strategy, discussed in Section 2, is selected by
setting SORT = 'N". In a variation of this strategy, used by setting SORT = 'S/, the
diagonal blocks of the generalized real Schur form are reordered before each step
of the reduction, so that each cluster of generalized eigenvalues, defined as
specified in the description of the tolerance 8 below, appears in adjacent blocks.
The blocks for each cluster are merged together, and the procedure described in
Section 2 is applied to the larger blocks. Using the option SORT = 'S' will usually
provide better efficiency than the standard option (SORT = 'N'), proposed in [2],
because there could be no or few unsuccessful attempts to compute individual
transformation matrices X and Y of the form (4) or (9). However, the resulting
dimensions of the blocks are usually larger; this could make subsequent
calculations less efficient.

For other two strategies, chosen by setting SORT = 'C' or 'B', the procedure is
similar to that for SORT = 'N' or 'S/, respectively, but the blocks of A5, and E;,
whose eigenvalue(s) is (are) the closest to those of (411, B11) (not to their mean)
are selected and moved to the leading position of A,, and E,,. This is called the
,closest-neighbour” strategy.

If SORT is set to 'S' or 'B', the tolerance @ is used for reordering the diagonal
blocks of the block upper triangular matrix pair. If 8 > 0, then the given value of 8
is used as an absolute tolerance: a pair of blocks i and a temporarily fixed pair of
blocks a (the first pair of blocks of the current trailing pair of submatrices to be
reduced) are considered to belong to the same cluster if their eigenvalues satisfy
the following ,,distance” condition |u, — u;| < 0, where u, and y; denote the
eigenvalues of two block pairs. If 8 < 0, then the given value of 8 is used as a
relative tolerance: the pairs of blocks i and a are considered to belong to the same
cluster if their eigenvalues satisfy, for finite eigenvalues u;, |ug, — p;| < 0] x

max { |,u j
defined by 6 = ej,,/ * is used instead, as a relative tolerance, where &, is the
machine precision, &, =~ 2.22 X 10716, The approximate symmetric chordal

metric is used as ,,distance” of two complex, possibly infinite numbers, x and y.
This metric is given by the formula

d(x,y) = min (|x — yl,

,Jj=1,..,n}. If 8 =0, then an implicitly computed, default tolerance,

_— o

taking into account the special cases of infinite or NaN values. If SORT = 'N' or
'C', the tolerance 0 is not used.

228 Sima Vasile / Performance improvement in computing the block diagonal form ...

These bottom-up strategies are very efficient for matrix pencils with relatively
small order and well separated eigenvalues, in which case the solver often succeeds
to obtain diagonal blocks of order at most two. For large order problems with
clustered eigenvalues, the solution time can be high, due to the possibility to have a
big number of unsuccessful attempts to split the blocks. A preliminary analysis of
the clustered structure of the spectrum, followed by an appropriate reordering of
the eigenvalues, could improve the efficiency. Specifically, starting by the most
separated eigenvalues, the solver could quickly decouple them, leaving to the end
all possibly big clusters of eigenvalues. Few failed attempts to split such a cluster
could signal that there is no reason to continue the computations and therefore,
finish the process with one or more large blocks. These strategies could be
considered as being of ,top-down” type. In implementation, the n,(n, —1)/2
pairwise distances between all n,, eigenvalues with nonnegative imaginary parts
are computed, since the eigenvalues with negative imaginary parts should be
considered together with their complex conjugate counterparts. Euclidean distance
is used if there are only finite eigenvalues; otherwise, chordal metric (10) can be
computed, in order to deal in the same way with finite and infinite eigenvalues.
(Alternatively, all infinite eigenvalues can be included in the same cluster and can
be separated from the beginning.) The distance information is used to build a
linkage matrix, which shows how the eigenvalues should be grouped into clusters.
The size of this matrix is (n, — 1) X 3. The third column contains a selected list of
distances, in decreasing order, while the first two columns specify the objects
which are grouped together into binary clusters. The objects are eigenvalues or
detected groups of close eigenvalues. The newly formed objects are linked together
and to other objects into bigger clusters, until all n, eigenvalues are linked in a
binary tree. The clusters that contain complex eigenvalues are extended with the
corresponding eigenvalues with negative imaginary parts; the eigenvalues in a
complex conjugate pair appear successively, with eigenvalue having positive
imaginary part in the first position. The number of clusters to be considered can be
specified. This number should be smaller than n,,, possibly much smaller.

4. Numerical results

Extensive testing has been performed to evaluate the standard and generalized
block diagonalization solvers. The computations have been done in double
precision on an Intel Core 17-3820QM portable computer (2.7 GHz, 16 GB RAM).
Some results obtained with the generalized solver are presented below. An
executable MEX-file has been built using the solver source code, SLICOT routines
and MATLAB-provided optimized LAPACK and BLAS routines.

Example 1. Consider first a random example generated using the following
MATLAB commands

A=rand(n); E=rand(n); p=10"3*rand(n, 1); q=rand(n, 1)/10"2;
P=diag(p); Q=diag(q); A=P*A*Q; E=P*E*Q;

Journal of Engineering Sciences and Innovation, Vol. 10, Issue 2 /2025 229

The random sequence has been initialized using the command rng('default'), for
reproductibility of the results. The executable solver has been called with all four
options for SORT, with either original matrices or in their generalized Schur form,
and with transformation matrices computed or not. Hence, there are 16 calls for
each value of n. For n = 50, T = 100, the maximum block size for all calls has
been 2, and the total CPU time has been 0.079542 s (seconds), resulting a mean
time of 0.0049714 s. The mean and standard deviation of the 24 relative errors
between initial and final eigenvalues (16 errors) and between the initial and
transformed matrix pairs (8 errors) have been 2.1649e-16 and 7.56342e-17,
respectively. The relative errors are computed as follows
eqa = || XTAY — Al|/max (1, ||A]]), er = ||XTEY — E||/max (1, ||E|]),

ey = |l — Pall/max (1, [IZID), (1D
where P is a permutation matrix (chosen to reorder f in agreement to), and the
variables with tilde and hat accents correspond to the generalized Schur form and
the computed results, respectively.
For n = 100, T = 100, the solver could not split the spectrum, so the maximum
block size for all calls has been 100. The total CPU time has been 0.565525 s and
its mean value 0.035345 s. The mean and standard deviation of the relative errors
have been 1.9846e-15 and 2.2303e-15, respectively. The spectrum of the matrix
pencil is shown in Fig.1. Although there are several well separated eigenvalues,
these could not be split. However, using T = 5000 for the same example, a perfect
block diagonalization is obtained, that is, the number of blocks of size 2 equals the
number of complex conjugate eigenvalues. The total CPU time has been 0.25866 s,
resulting a mean time of 0.016166 s. The mean and standard deviation of all 24
relative errors in (11) have been 1.3076e-16 and 5.8876e-17, respectively. A
similar behavior also appears for T = 100, but without scaling of A and E in the
MATLAB commands above.

P Eigenvalues of a randomly generated matrix pencil

3
3

2

maginary part
o

-2

3k

-4
35 30 25 20 15 10 5
Real part

Fig.1. The spectrum of a randomly generated matrix pencil of order 100.

=)
2

=]
I

230 Sima Vasile / Performance improvement in computing the block diagonal form ...

Using several strategies for a preliminary reordering of the eigenvalues {i, for 6
clusters (of eigenvalues with nonnegative imaginary parts), perfect block
diagonalization results have been obtained, and the CPU times for those strategies
varied between 0.0056 s and 0.011479 s. Moreover, the same results have been
produced even with T = 100, when the CPU times varied between 0.004889 s and
0.012211 s. Therefore, the mean CPU time has been reduced by a factor of about 2
compared to the results using botom-up strategies. The performance statistics are
summarized in Table 1, where b denotes the vector of diagonal block orders and
e € R** contains the eight values max(es, ez) and 16 values e, for all 16 solver

calls.
Table 1. Example 1 performance statistics.
n T max(b) | CPU time (s) | mean(CPU time) | mean(e) std(e)
50 | 100 2 0.079542 0.0049714 2.1649¢-16 | 7.5634e-17
100 | 100 100 0.565525 0.035345 1.9846e-15 | 2.2303e-15
100 | 5000 2 0.25866 0.016166 1.3076e-16 | 5.8876e-17

Example 2. A matrix pencil of order 999 has been investigated. It has 107 real are
446 complex conjugate eigenvalues. The eigenvalues with nonnegative imaginary
parts are displayed in Fig.2. Without using clustering information, the block
diagonalization solver, with SORT = 'N’ and t = 5000, obtained a solution with
135 blocks in about 62.68 s. The largest block, of order 734, appeared in the 89-th
position; there are three 1 X 1 and 131 2 X 2 diagonal blocks. The remaining 104
real eigenvalues are included in the largest block. The same block structure and
comparable CPU times have been recorded for the other values of the parameter
SORT. The existence of such a large block is due to a great number of badly
separated eigenvalues, both real and complex conjugate.

10000 Eigenvalues with nonnegative imaginary parts

2 B

8000 20 85

. s § 5

6000 | . &
@

5 &

5000

Imaginary part

4000 |

3000

2000 |

1000

0 lo—eo——e—6-o—0-0—o—o s b
10000 -9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000
Real part

-1000

Fig. 2. The eigenvalues with nonnegative imaginary parts of a matrix pencil of order 999.

Journal of Engineering Sciences and Innovation, Vol. 10, Issue 2 /2025 231

To investigate the advantages of exploiting the clustering information, several
values for the number of clusters have been tried. The best results have been
obtained for 120 clusters. There are 141 diagonal blocks, with the largest block, of
order 719, appearing in the last position; the other 140 diagonal blocks are 2 X 2.
All real eigenvalues are included in the largest block. The total CPU time for
reordering the eigenvalues fI and block diagonalization has been 4.6905 s, that is,
this execution was 13.36 times faster than the execution without using clustering
information. Moreover, more blocks have been found, and the largest block has a
smaller order. This illustrates the benefits of considering clustering techniques in
the block diagonalization algorithm. The performance statistics are summarized in
Table 2. The numbers of 1 X 1 and 2 X 2 blocks are also given.

Table 2. Example 2 performance statistics.

size(b) | max(b) | position | #1x 1 | #2x2 | CPU time (s) | # clusters

135 734 89 3 131 62.68 -

141 719 141 0 140 4.69 120

5. Conclusions

Techniques for computing the block diagonal form for matrix pencils are
presented. Such a form is very useful, for instance, for fast simulation of linear
time-invariant descriptor systems, since their state dynamics can often be very well
approximated by a series of decoupled subsystems of much lower sizes. Starting by
reducing the matrix pencil to a generalized Schur form by unitary transformations,
the off-diagonal blocks are then successively annihilated by well-conditioned non-
unitary transformations, using solutions of generalized Sylvester equations. The
ultimate reduction to diagonal or quasi-diagonal form, with blocks of order 1 (and
2, in the real case), is often impossible, since this could drastically diminish the
accuracy of the results. The basic techniques attempt to increase the granularity as
much as possible, by selecting appropriate eigenvalues and reordering them to
improve the conditioning of the problem. For high order matrix pencils, with large
and dense clusters of eigenvalues, these techniques may spend much computing
time unsuccessfully trying to split such clusters into smaller ones. Further
investigation will be devoted for incorporating advanced clustering techniques into
the block diagonalization process for detecting subproblems hard to split, and
therefore quickly accepting larger order diagonal blocks. Numerical results are
presented which illustrate the performance and effectiveness of these techniques;
for instance, using clustering information the computing effort was reduced by a
factor bigger than 10 for a matrix pencil of order 999.

232 Sima Vasile / Performance improvement in computing the block diagonal form ...

Acknowledgements

Acknowledgements are addressed to Pascal Gahinet for valuable suggestions.

References

[1] Mehrmann V., Stykel T., Balanced truncation model reduction for large-scale systems in
descriptor form, Benner, P., Mehrmann, V., D. Sorensen (eds.), Dimension Reduction of Large-Scale
Systems, vol. 45 of Lecture Notes in Computational Science and Engineering, Springer-Verlag,
Berlin, Heidelberg, New York, 2005, ch. 3, p. 89-116.

[2] Bavely C.A., Stewart G.W., An algorithm for computing reducing subspaces by block
diagonalization, SIAM J. Numer. Anal., 16, 2, 1979, p. 359-367.

[3] Wilkinson J.H., The Algebraic Eigenvalue Proble, Clarendon Press, Oxford, UK, 1965.

[4] Stewart, G.W., On the sensitivity of the eigenvalue problem Ax = ABx, SIAM J. Numer. Anal.,
9, 1972, p. 669-686.

[5] Wilkinson J.H., Kronecker's canonical form and the QZ algorithm, Lin. Alg. Appl., 28, 1979, p.
285-303.

[6] DemmelJ., The condition number of equivalence transformations that block diagonalize matrix
pencils, SIAM J. Numer. Anal., 20, 1983, p. 599-610.

[71 Golub, G.H., Van Loan, C.F., Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 4™ edition, 2013.

[8] Kagstrom B., Westin L., Generalized Schur methods with condition estimators for solving the
generalized Sylvester equation, IEEE Trans. Auto. Contr., 34, 1989, p. 745-751.

[91] Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum
A., Hammarling S., McKenney A., Sorensen D., LAPACK Users’ Guide: Third Edition, Software -
Environments - Tools Series, SIAM, Philadelphia, 1999.

[10] Benner P., Mehrmann V., Sima V., Van Huffel S., Varga A., SLICOT — A subroutine library in
systems and control theory, Datta B. N. (ed.), Applied and Computational Control, Signals, and
Circuits, Birkhduser, Boston, MA, 1, 10, 1999, p. 499-539.

[11] Bartels R.H., Stewart G.W., Algorithm 432: Solution of the matrix equation AX + XB = C,
Comm. ACM, 15,9, 1972, p. 820-826.

[12] Dongarra J.J., Du Croz J., Duff 1.S., Hammarling S., Algorithm 679: A set of Level 3 Basic
Linear Algebra Subprograms, ACM Trans. Math. Softw., 16, 1990, p. 1-17, 18-28.

