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Abstract. The paper presents the results obtained regarding the stability of discs perforated 

by two, four and 96 circular holes. Circular discs are subjected to two types of loadings: 

diametrical compression by concentrated forces and radial compression produced by an 

equivalent uniformly distributed load on the contour of the disks. The influence of the 

radius of the holes, the distance between the holes and the way of applying the loads, on the 

value of the critical buckling load is investigated. The results obtained by the finite element 

method are compared with those obtained in the case of non-perforated disks with the same 

support conditions and required with the same loads. At the same time, the forms of loss of 

stability and the values of the buckling safety coefficients for the analyzed disks are 

determined. 

 

 Key words: buckling safety factor, critical buckling load, finite element method, 

perforated disk, stability 

 

1. Introduction 

 

Using of steels and their alloys in thin engineering structures has made the issue of 

their elastic stability of great importance. The use of steel resulted in slender 

constructions with sub-assemblies subject to compression. This is the case of thin 

plates that can fail due to large deformations and/or loss of elastic stability without 

exceeding the allowable stresses. A particular case is also the problem of 

compressed discs which can fail through lateral instabilities. 

The first investigations on the loss of stability in bars were carried out in by Euler 

[1], [2]. In his studies he admitted that the bar, for the four fundamental cases of 

clamping at the ends, buckles. In this situation, starting from the differential 

equation of the deformed beam axis and the boundary conditions in the support 

systems, Euler finds the expression for the minimum force that would produce 
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extremely large deformations, tending to infinity. This value of the force was called 

the critical buckling load. 

Timoshenko [3], [4] studies the elastic stability of thin circular plates of radius R 

supported or clamped on the contour and loaded in the middle plane with loads 

uniformly distributed all around. Like Euler in the case of bars, Timoshenko admits 

that the plate buckles under the action of compression forces in the median plane 

and that the deformed surface is axially symmetric. From the differential equation 

of the deformed surface, which has as a solution a sum of Bessel functions of the 

first order of the first and second kinds, obtain the expression of the critical 

buckling distributed load (N/m) for the clamped plate on the contour in the form: 

 ( )
2

14.68r cr

D
N

R
= , (1) 

rigidity of the plate, and t is the constant thickness of plate. 

In a similar way, he solves the buckling problem of thin circular plates simply 

supported on the contour and loaded with uniformly distributed compressive forces 

in the middle plane on the plate contour, obtaining for the critical buckling load the 

expression 

 ( )
2

4.20r cr

D
N

R
= , (2) 

so a critical force 14.68/4.2 = 3.5 times lower than in the case of the clamped plate 

on the contour.  

Timoshenko also studies the stability of a circular plate with a central hole for 

which he derives the expression for the critical buckling load. This depends on the 

radius of the hole r and the radius of circular plate R as well as the stiffness of the 

plate. The general formula can be written as 

 ( )
2r cr

D
N k

R
= ,  (3) 

where 
r

k
R

 
 
 

 is given in Fig. 1 for clamped and simply supported external edges. 

Another method for determining the critical buckling force [4] assumes that the 

plate buckles slightly under midplane forces and determines the amount of forces 

to hold the plate in this shape. By solving the differential equation of the deformed 

plate and setting the boundary conditions, the values of the forces that produced the 

buckling are determined. The lowest value represents the critical buckling load.  

For more complex geometries as circular plates with more holes and loads which 

are not symmetric, it is very difficult to obtain an analytical solution of critical 

forces. The approximate finite element method is a good alternative. 

Next we review the classical eigenbuckling problem which may be used in a Finite 

Element Analysis (FEA) of similar applications. 
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Fig. 1. Variation of coefficient k in relation (3) for a circular plate with a central hole.  

(a) clamped external edges; (b) simply supported external edges. 

 

2. Eigenbuckling problem in FEA 

 

As analytically, the equilibrium equation in FEA must be written in deformed 

configuration [5, 6]. The linear elastic stiffness matrix [K], used in static analyses is 

obtained in small displacement conditions. It is necessary to correct the total 

stiffness matrix with the geometric stiffness matrix [K] which is a function of the 

stress state. [K] is initially unknown. Equilibrium in a deformed state which 

represents an instable configuration results as the following nonlinear global 

equilibrium equation of the model: 

    ( )   FUKK =+  ,  (4) 

where {U} is the displacement vector and {F} the external force vector. 

In practice, the procedure for obtaining the critical forces (bifurcation points) is as 

follows: 

1. A reference load {Fref}is considered. A static analysis is performed, using the 

equation [K]{Uref} = {Fref}, in order to obtain the membrane stresses and then the 

matrix [K, ref]. A simplifying hypothesis of load variation is made in the form: 

    refF F= ,  (5) 

where  is a scalar (the forces increase proportionally). Since the initial calculus is 

linear, it results: 

   ,refK K   =     (6) 

2. A bifurcation point correspond to two equilibrium states {U} and {U + dU} for 

the loading case defined by cr{Fref}. Thus, one can write: 

  ( )   ( )    ( )  , , dcr ref cr ref cr refK K U K K U U F      + = + + =    . (7) 

From the above relation, it results: 

  ( )   , d 0cr refK K U  + =  .  (8) 
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This is the equation of an eigenvalue problem that can be rewritten as: 

     ,d dcr refK U K U  = −   .  (9) 

From (9), one can obtain the safety coefficients for loss of stability ccr = − cr for 

the reference loading, that means: 

    cr cr refF c F= .  (10) 

The mode shapes of loss of stability with respect to the equilibrium position {U} 

are given by the vectors {dUcr}, associated to the coefficients ccr = −cr. Because 

this type of analysis is adequate for structures with small displacements, the modal 

shapes of loss of stability are referred to the initial, non-deformed shape. 

The smallest eigenvalue (or some of the smaller) are of most interest in practice. 

Equation (9) is sometimes written in finite element codes in simplified form as 

      K K  = .  (11) 

 

3. Partial validation of results obtained using FEA 

 

For a circular plate and a circular with a central hole which are axial symmetrical 

loaded on external edges with radial uniform distributed load Nr the critical load 

can be found analytically using relations (1) - (3) and Fig. 1. Next, for particular 

cases of geometry, the same problems were solved using Ansys.  

Considering r/R = 0.2, from Fig. 1 results k = 13.3 for the case of clamped plate 

and k = 3.60 for the case of simply supported plate. Critical loads (Nr)cr for the 

folowing input data: E = 3400 MPa; ν =0.3, R = 150 mm; t = 10 mm and r = 0.2R = 

30 mm are presented in Table 1. 
 

Table 1. Critical loads (Nr)cr in (N/mm) obtained analytically and using FEA 

Boundary conditions Clamped edges Simply supported edges 

Case Analytic FEA 
Error 

[%] 
Analytic FEA 

Error 

[%] 

Circular plate 203.1 199.4 1.82 58.12 57.78 0.59 

Circular plate with a hole in the 

center 
184.05 185.49 -0.78 49.82 48.71 1.41 

 

In Fig. 2 is presented the finite element model for the circular plate with a hole in 

the center. The reference load was considered as 1 N/m and in this case the 

smallest eigenvalue corresponds to the critical load. For meshing, the quadrilateral 

eight-nodded shell element (Shell 281) was considered. 
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Fig. 2. Geometry, mesh and load of a circular plate with a hole in the center. 

 

The principal stress distributions obtained for reference load in Fig. 2 (Nr = 1 N/m) 

are presented in Fig. 3 in cylindrical system of coordinates (RSYS = 1). One can 

observe that the stress distributions correspond to boundary conditions, i.e. the 

radial stresses are between 0.1 MPa (because t = 10 mm) on the external contour 

and zero (0.001 MPa due to small errors in finite element model, the mesh is not 

fine enough) on the internal contour. 

The smallest load factors and modes of instabilities are presented in Fig. 4. For the 

case of circular plate without central hole the modes are similar and are not 

presented here. 

  
(a) (b) 

Fig. 3. Principal stress distribution for the radial load in Fig. 2.  

(a) Radial; (b) Circumferential. 

 

  
(a) (b) 

Fig. 4. Instability modes for model in Fig. 2 obtained using FEA. (a) Clamped edges; (b) Simply 

supported edges. Here "FACT" represents exactly critical radial load in N/m. 
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From Table 1, one can see that the error between analytically and FEA results are 

small enough to consider that the finite element type used in modeling is adequate 

and it may be used for more complex simulations. 

 

4. FEA results and discussion for complex perforated discs 

 

Perforated circular discs represent sub-assemblies frequently found in the 

construction of motor vehicles, agricultural machines, and machinery in the process 

industry. Perforated discs subjected to diametrical compression may have 

geometric and loading symmetry. The discs under study differ from those studied 

so far both in geometry and in the way of applying of the compression force. The 

discs are perforated with two, four or 96 holes and the compression force is applied 

to a very small area (Fig. 5). 

The research carried out refers to circular discs with radius R = 150 mm and 

constant thickness t = 10 mm, perforated by with two, four or 96 circular holes 

with radii r in the range 1 to maximum 50 mm (1, 2, 5, 10, 20, 30, 40, 50 mm. The 

two and four holes respectively (Fig. 5,b,c) are arranged on a circle with radius 

R1=75 mm, on the horizontal diameter respectively on the horizontal diameter and 

on the vertical diameter of the perforated discs. The centers of the 96 holes (Fig. 

4,d) are arranged in a grid of squares with a side of a = 24 mm. The discs are made 

of plexiglass with the elastic characteristics: Young's modulus E = 3400 MPa and 

Poisson's ratio ν = 0.3. Perforated discs subjected to diametrical compression 

present both geometric and loading symmetry. 

 
Fig. 5. Researched discs for lateral instabilities. 

 

The static analysis of the distribution of displacements and stresses in the discs, as 

well as the investigation of their stability, was carried out by the finite element 

method, using Shell281 finite element type in software Ansys [5], [6]. The 

discretization in finite elements was performed for the four types of discs studied: 

non-perforated disc, disc perforated by two, four or 96 holes. When discretizing the 

non-perforated disc, it was considered that it should be done in such a way that by 

extracting some areas, the disc perforated by two, four and 96 holes with the 

expected values of the radii would result. At the same time, it was considered that 
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in the vicinity of the holes with a very small radius and in the area of contact of the 

disk with the block through which the compression force is applied, a fine 

refinement of the discretization should be done. In the area of transmission of the 

compression force (around of 6 - 8 mm), a parabolic distribution of the pressure 

with the equivalent force F was imposed. 

In Fig. 6 are presented the discretizations and boundary conditions for two holes of 

the analyzed models for a particular radius r of 10 mm subjected to compression by 

the force F = 1000 N. The load was considered very close to real condition using 

the relation below in global coordinates (see Fig. 6,a) 

 ( )
2

0 1
x

p x p
c

  
= −  

   

,  (12) 

where 
0

3

4

F
p

c
=  and c was obtained from a previous static nonlinear analysis [7], 

and it is around of 3 - 4 mm for F = 1000 N. For example for the case of two holes 

c = 3.85 mm. Because the mesh size around the applied pressure is around of 0.2 

mm (finite), the applied force was checked using numerical integration of the 

applied pressure over the elements 

 ( )
c

c
F p x dx

−
=  .  (13) 

 
Fig. 6. Discretization and boundary conditions when load was applied as parabolic distributed 

pressure. (a) Disk with two holes; (b) Disk with 96 holes. 

 

The analysis was considered also for the same fixed DOFs and rigid region 

condition (constraint equations) for the top and bottom nodes for the same distance 

2c (Fig. 7) and it was obtained practically the same values for the load factors. As 



 

 

 

 

 

Costică Atanasiu and Ștefan Sorohan / Buckling of perforated discs 

 

 

 

 

 

8    

one can see in Fig. 7, the distributed load results nonrealistic and stress distribution 

in the rigid region zone is locally perturbed but it does not have influence in the 

eigenvalue problem. 

 
Fig. 7. Discretization and boundary conditions when load was applied on a rigid region for the case of 

disk without holes. 

 

The research was carried out for several variants of the clamping of the discs at the 

ends and the way of transmission of the diametrical compression force s discussed. 

The discs were considered hinged at the ends (case 1) or embedded at one end and 

free at the other end (case 2). 

In the present work, the results obtained only for one of the studied cases are 

presented extensively (case 1). The verification of the performed modeling was 

done by calculating the stresses in the center of the non-perforated disc, which 

were obtained by the finite element method in reference [7], i.e. 1 = 2.12MPa and 

3 = -6.36 MPa compared to 1 = 2.12 MPa and 3 = -6.37MPa, results from the 

analytical calculation. This confirms the assessment that the schematizations and 

discretizations used for the applied loads and the disc geometry were very close to 

the real situation of the studied problem.  

The results regarding the finite element analysis of stress distribution in perforated 

discs were analyzed in the paper [7]. The investigation of the elastic stability of the 

discs was carried out with the software Ansys 19 , which makes the same 

assumptions as in the papers [3], [4], but solves the resulting differential equations 

using the finite element method. The values of the forces that produce the buckling 

of the discs are thus obtained. The ratio between the critical buckling load and the 

compressive force acting on the discs, according to (10) is the buckling safety 

factor 

 crF
c

F
= .  (14) 
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The software Ansys renders the number of loss of stability shapes required for each 

perforated disc corresponding to the forces that produce them but only the lowest 

value of the force represents the critical buckling load. From the multitude of cases 

studied, they are shown in Fig. 8 and in Table 2 when the holes had a radius of 10 

mm.  

 

 

(a) (b) 

  
(c) (d) 

Fig. 8. Fundamental modes of instability for models in Fig. 5 obtained using FEA for r = 10 mm and 

F = 1000 N. 

 

From the Table 2 one can see that critical buckling load decreases with increasing 

the number of holes and reducing the area of the discs. If for the full disc the 

critical buckling load is Fcr = 6409 N, for the disk with two holes this force 

decreases to Fcr = 6291 N, for the same disc with four holes it decreases to Fcr = 

6138 N and for the disc with 96 holes it decreases to Fcr = 2266.9 N, that means a 

reduction of the critical buckling load for the 96-hole disc by 2.78 times that of the 

two-hole disc and 2.83 times that of the non-perforated disc. 

 
Table 2. Stability calculation results for the discs 

Disc Disc area 

[mm2] 

Critical load 

[N] 

Safety factor 

[-] 

Full 70685 6409 6.4091 

With 2 holes 70057 6291 6.2912 

With 4 holes 69429 6138 6.138 

With 96 holes 40526 2266.9 2.2669 
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Table 3 shows the results of the stability calculations for the disc perforated by four 

holes with radii r between 1 mm and 50 mm. It is found that increasing the radius 

of the holes leads to a decrease in the area of the disc and the critical buckling load. 

If the radius of the holes is r = 1 mm, the critical buckling load is Fcr = 6405 N 

compared to Fcr = 6409 N for the non-perforated plate; at r = 50 mm the critical 

load of buckling is Fcr = 1882 N, so a 3.4-fold reduction in the force that causes the 

loss of disc stability.  

 
Table 3. Stability calculation results  for the perforated disc by four holes 

Hole radius 

[mm] 

Disc area 

[mm2] 

Critical load 

[N] 

Safety factor 

[-] 

1 70673 6405 6.405 

2 70635 6395 6.395 

5 70371 6333 6.333 

10 69429 6138 6.138 

20 65659 5462 5.462 

30 59376 4518 4.518 

40 50579 3378 3.378 

50 39269 1882 1.882 

 
The discs show symmetry not only geometrically and loading, but also in terms of 

rigidity and grip. For these reasons, regardless of the number of holes, the disks 

retain their form of loss of stability but which have maximum displacements which 

are produced by forces of different places along the horizontal diameter. The mode 

of fastening at the ends of the discs has a main role in determining the buckling 

shapes. For example in Fig. 9 is presented the fundamental buckling mode of the 

disc with four holes and r = 20 mm bonded in the lower part over a distance 2c = 6 

mm (see Fig. 7 in which UX=UY=UZ=ROTX=ROTY=ROTZ=0) and free in the 

rest loaded in compression with the same force F = 1000 N. 

 
Fig. 9. Buckling form for a fixed disc at the lower part and free at the upper part  

(r = 20 mm) 
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Following the research undertaken in the paper on the elastic stability of circular 

discs perforated by two, four or 96 circular holes, subjected to diametrical 

compression by concentrated forces considered distributed according to a parabolic 

law in the contact area, some conclusions can be drawn regarding the factors that 

influence the value of the critical forces at which the discs lose their stability. One 

of these factors is the stiffness of the disc, finding that when the effective area of 

the disc decreases, the value of the critical buckling force also decreases. Thus, for 

the disc with 96 holes with the radius r=10mm, the critical buckling force is almost 

three times lower than for the solid disc. At the same time, for the disc perforated 

by the same number of holes, the critical buckling force decreases with the increase 

of the radius of the holes. For example, for the disc with four holes with their 

radius r=1mm Fcr=6405N and for the same disc with holes having the radius 

r=50mm the critical buckling force Fcr=1882N, i.e. a 3.4 times reduction of the 

force that causes the loss of disc stability. The way the disc is clamped at the place 

of transmission of the compressive load influences the value of the critical buckling 

force.  Thus, for a disk considered articulated-articulated, the force of loss of 

stability is much higher than in the case of the same disk, with the same number of 

holes, of the same radius but considered recessed-free end. And the way of 

applying the load can influence the value the critical buckling load. A compression 

load transmission through an elastic element with a distribution considered 

according to a parabolic law is more favourable than force transmission through a 

rigid element and a distribution considered uniform. In the first situation of load 

transmission, the value of the force at which the disc loses its stability is higher 

than in the second case  If a comparison is made between the disc perforated 

through four holes with a radius of r=20mm in the variant in which it is elastically 

clamped at the ends and subjected to compression and the same disc which is 

embedded at one end and is free at the other end, it can be said that in the variant 

articulated-articulated at the ends, the critical buckling is  produced by the force 

F=5462 N and in the embedded-free-end version the buckling is produced by the 

force F=146.8 N. In this case the stress in the center of the disk corresponding to 

the critical buckling force is cr =0.22MPa compared to the stress corresponding to 

this compression force =0.568MPa. Buckling for this type of grip occurs at a 

compressive stress in the center of the disc 2.58 times lower than in the case of 

simple compression.   

 Finite element analysis allows the use of a variety of assumptions and 

schematizations that bring the numerically analyzed problem closer to the real 

problem. 

 

5. The stability of perforated discs loaded with  uniformly distributed load on 

the contour 

 

The stability analysis was also performed for the case where the concentrated radial 

force F=1000N is uniformly distributed on the circumference of the discs of radius 

R=150mm, as a uniform pressure. 
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 In this situation the value of the load force distributed on the contour is 

 
2

F
p

R
= = 1.061 N/mm. 

To eliminate rigid body displacements, discs were considered articulated on the 

vertical diameter. On the outer contour of the discs only use movements are 

blocked. In the stability analysis, the loss of stability modes can be 

symmetric/antisymmetric, which is why full disc models were used. . After the 

discretization of the perforated discs with two, four and 96 holes with a radius 

between 1 and 50 mm and their loading with the uniform radial load p ( fig.10 ), 

the stability in the discs was analyzed. 

 
                                 (a)                                                 (b) 

. 
(c)                                                    (d) 

Fig.10. Loaden ddiscs with concentrated  uniformly distributed load on the contour. 

 

The software Ansys renders the number of loss of stability shapes required for each 

perforated disc corresponding to the forces that produce them but only the lowest 

value of the force represents the critical buckling load. From the multitude of cases 

studied, they are shown in Fig. 11 and in Table 4 when the holes had a radius of 10 

mm. 
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The stability in the non-perforated disc was also studied with the same loading and 

stress conditions as in fig.10,a to be able to make a comparison with the stability in 

the perforated disk and calculate the value of the safety factor.  

For the full disc, simply supported on the contour, the buckling safety factor for 

which the calculation was performed, it results [3 ]. [4 ]: 

 

2

2
2

2.05

2 2.05 26.4051

2

cr

D
p D DRc

Fp FR FR

R





= = = = . 

For the solid disk, the value of the buckling safety factor c = 54.78 results. Using 

the FEM-finite element method, the value of the FACT buckling safety factor c = 

54.457 was obtained, a result very close to the one obtained analytically. 

By running the software, the value of critical loads andof the fact buckling safety 

was obtained for each studied case. Some of the results obtained by using the finite 

element method are listed in tables 4, 5 and 6.  In fig. 11 are represented  

fundamental modes of instability for models in Fig. 10 obtained using FEA for r = 

10 mm and F = 1000 N. 

 
Table 4. Stability calculations results for discs. 

Disc Disc area 

[mm2] 

Critical load 

[N] 

Safety factor 

[-] 

Full 70685 54457 54.457 

With 2 holes 70057 52796 52.796 

With 4 holes 69429 51227 51.227 

With 96 holes 40526 16934 16.234 

 

Table 5.  Stability calculations results for the perforated  disk  by four holes 

Hole radius 

[mm] 

Disc area 

[mm2] 

Critical load 

[N] 

Safety factor 

[-] 

5 70371 53608 53.608 

10 69429 51227 51.227 

20 65659 43540 43.540 

30 59376 34600 34.600 

40 50579 26100 26.100 

50 39269 18920 18.920 

 

Table 6. Stability calculation results for the perforated disc by 96 holes 

Hole radius 

[mm] 

Disc area 

[mm2] 

Critical load 

[N] 

Safety factor 

[-] 

3 67937 48160 48.16 

4 65827 44440 44.44 

6 59798 35170 35.17 

8 51358 25730 25.73 

10 40506 16920 16.92 

11 34175 12740 12.74 
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(a) (b) (c) (d) 

 
Fig. 11. Fundamental modes of instability for models in Fig. 10 obtained using FEA for r = 10 mm 

and F = 1000 N 

 

6. Conclusions 

 

From the research carried out on the stability of perforated discs subjected to 

compression, several conclusions can be drawn: 

 * the method of applying the load significantly influences the stability of the discs. 

Thus, for the same disc, the critical buckling load and the buckling safety factor 

increase and therefore the stability of the discs increases if the compression load is 

transmitted uniformly along their contour, 

 * the stiffness of the discs directly influences the stability of the discs. If the 

effective area of the discs decreases, then the value of the critical buckling load and 

the buckling safety factor also decrease. For example the disc with 96 holes for the 

same value of compression force, the value of critical buckling force is almost 

three times lower than the same non-perforated disc 

 * the value of the critical buckling load decreases with the increase of the radius of 

the holes in the disk with the same value and mode of application of the 

compression forces. 
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