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Abstract. Efficient and realible algorithms for finding the L-infinity norm for both 

continuous- and discrete-time descriptor systems have been recently developed. These 

algorithms exploit the underlying Hamiltonian or symplectic structure of the computational 

problem.  The solver incorporating these advances has been extensively tested on large sets 

of control applications. Numerical results and comparisons illustrated the good 

performance and effectiveness of this solver. However, further investigations have shown 

that the performance can still be improved. The refinements performed include a better 

selection of the test frequencies used to find a lower bound for the L-infinity norm and of 

the tolerances for detecting the poles lying on the boundary of the stability domain, a better 

use of the computer memory hierarchy, an optimal workspace for computations, etc. Such 

refinements allowed not only to reduce the computing time, but also to improve the 

accuracy and reliability of the results. 
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1. Introduction 

 

One of the most important norm for the analysis and design of linear dynamical 

systems is the L∞-norm, tphat is often encountered in robust control, model order 

reduction, and other applications. For instance, the L∞-norm is used as a robustness 

measure in the robust control field [1], [2], or as an error measure for model and 

controller order reduction applications, see [3] and the references therein. 
A linear time-invariant (LTI) system can be defined by 

 𝐸𝜆(𝑥(𝑡)) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),   𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡), (1) 

where 𝐴, 𝐸 ∈ 𝑹𝑛×𝑛, 𝐵 ∈ 𝑹𝑛×𝑚, 𝐶 ∈ 𝑹𝑝×𝑛, 𝐷 ∈ 𝑹𝑝×𝑚, 𝑥(𝑡) ∈ 𝑹𝑛 is the state 

vector, 𝑦(𝑡) ∈ 𝑹𝑝 is the output vector, 𝑢(𝑡) ∈ 𝑹𝑚 is the input vector, and 𝜆(𝑥(𝑡)) 
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is the differential operator, d𝑥(𝑡)/d𝑡, or the advance difference operator, 

𝜆(𝑥(𝑡)) = 𝑥(𝑡 + 1), for continuous- and discrete-time case, respectively. The 

input vector can include disturbance and control components, while the output 

vector can contain measured and regulated components. The matrix 𝐸 can be 

singular. This happens when model (1) includes algebraic constraints, besides 

differential or difference equations. Such systems are referred to as descriptor (or 

singular) systems. It is assumed in the sequel that the matrix pencil 𝜆𝐸 − 𝐴 is 

regular, that is, det(𝜆𝐸 − 𝐴) ≢ 0. The transfer function matrix of the system (1) is 

 𝐺(𝜆) = 𝐶(𝜆𝐸 − 𝐴)−1𝐵 + 𝐷. (2) 

The L∞-norm is defined by 

   ‖𝐺‖𝐿∞
≔ 𝑠𝑢𝑝𝜔∊𝑹𝜎𝑀(𝐺(𝑖𝜔)), (3) 

for 𝐺 ∊ 𝑅𝐿∞
𝑝×𝑚(𝑖𝜔), and by 

   ‖𝐺‖𝐿∞
≔ 𝑠𝑢𝑝𝜔∊[−𝜋,𝜋)𝜎𝑀(𝐺(𝑒𝑖𝜔)), (4) 

for 𝐺 ∊ 𝑅𝐿∞
𝑝×𝑚

(𝑒𝑖𝜔), where 𝜎𝑀(. ) denotes the maximum singular value, and 

𝑅𝐿∞
𝑝×𝑚(𝑖𝜔) and 𝑅𝐿∞

𝑝×𝑚
(𝑒𝑖𝜔) are  

rational subspaces of Banach spaces of all 𝑝 × 𝑚 matrix-valued functions that are 

bounded on the imaginary axis, or the unit circle, for continuous- and discrete-time 

systems, respectively. Each 𝐺 ∊ 𝑅𝐿∞
𝑝×𝑚(𝑖𝜔) or 𝐺 ∊ 𝑅𝐿∞

𝑝×𝑚
(𝑒𝑖𝜔) has a realization 

of the form (1). As a convention, ‖𝐺‖𝐿∞
= ∞ if 𝐺 is not in 𝑅𝐿∞

𝑝×𝑚(∙), where ∙ 

stands for 𝑖𝜔 or 𝑒𝑖𝜔. For continuous-time systems, this happens when 𝐺 has purely 

imaginary poles, or when it is improper, that is, lim
𝜔→∞

𝐺(𝑖𝜔) = ∞. For discrete-time 

systems, 𝐺 is not in 𝑅𝐿∞
𝑝×𝑚

(𝑒𝑖𝜔) when 𝐺 has unitary poles, that is, poles on the 

unit circle. The poles of 𝐺 are the controllable and observable eigenvalues of the 

matrix pencil 𝜆𝐸 − 𝐴. 

There is a connection between the singular values of 𝐺(𝑖𝜔) or 𝐺(𝑒𝑖𝜔) and the 

finite, purely imaginary or unitary eigenvalues, respectively, of some structured 

matrix pencils [4]. For continuous-time systems, such a pencil is 

 𝐻𝑐(𝛾) = [
𝜆𝐸 − 𝐴 0

0 𝜆𝐸𝑇 + 𝐴𝑇] − [
𝐵 0
0 −𝐶𝑇] [

−𝐷 𝛾𝐼𝑝

𝛾𝐼𝑚 −𝐷𝑇]
−1

[
𝐶 0
0 𝐵𝑇] ,  (5) 

where 𝛾 is a parameter and 𝐼𝑞 denotes the identity matrix of order 𝑞. The pencil 

corresponding to discrete-time systems, 𝐻𝑑(𝛾), has a similar formula, but the (2,2) 

elements of the first two matrices in the right-hand side are 𝜆𝐴𝑇 − 𝐸𝑇 and −𝜆𝐶𝑇, 

respectively. (See, for instance, [5] and the references therein.) The following 

theorem is proven in [6]: Assume that 𝐺 ∊ 𝑅𝐿∞
𝑝×𝑚(𝑖𝜔), 𝛾 > 0 is not a singular 

value of 𝐷 and 𝜔0 ∈ 𝑹. Then, 𝛾 is a singular value of 𝐺(𝑖𝜔0) if and only if 𝐻𝑐(𝛾) 

has the eigenvalue 𝑖𝜔0. The result for discrete-time systems is obtained by 

replacing 𝑖𝜔0 by 𝑒𝑖𝜔0 (with 𝜔0 ∈ [−𝜋, 𝜋)). 

The results above have the following consequences [5]: Assume that 𝐺 ∊

𝑅𝐿∞
𝑝×𝑚(𝑖𝜔) and let 𝛾 > min

𝜔∊𝑹
𝜎𝑀(𝐺(𝑖𝜔)) be not a singular value of 𝐷. Then, 

‖𝐺‖𝐿∞
≥ 𝛾 if and only if 𝐻𝑐(𝛾) has finite, purely imaginary eigenvalues. 
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Similarly, assume that 𝐺 ∊ 𝑅𝐿∞
𝑝×𝑚

(𝑒𝑖𝜔) and let 𝛾 > min
𝜔∊[−𝜋,𝜋)

𝜎𝑀(𝐺(𝑒𝑖𝜔)) be not a 

singular value of 𝐷. Then, ‖𝐺‖𝐿∞
≥ 𝛾 if and only if 𝐻𝑑(𝛾) has unitary 

eigenvalues. The first part has been proven in [6]. The second part follows from the 

equivalence of pencils for discrete- and continuous-time systems [7]. These results 

allow to extend to descriptor systems the quadratically convergent method in [8], 

[9] for the computation of the L∞-norm.  

Conceptual algorithms are presented in [5], [6] and summarized in [10]. They start 

with an initial lower bound, 𝛾𝑙, for the L∞-norm, found by evaluating 𝜎𝑀(𝐺(∙)) on 

the boundaries of the frequency interval [0, ∞) or [0,𝜋), respectively, and on 

further well-chosen inner test frequencies. For continuous-time, standard systems, 

that is, with 𝐸 = 𝐼𝑛 , 𝜎𝑀(𝐷) is also included in the set of test frequencies. At each 

iteration of the algorithm, a value 𝛾 is set as 𝛾 = (1 + 𝜀)𝛾𝑙, where ε is a given 

tolerance. Then, the finite, purely imaginary or unitary eigenvalues, 𝑖𝜔𝑗 or 𝑒𝑖𝜔𝑗, 

𝑗 = 1, … , 𝑘, of 𝐻𝑐(𝛾) or 𝐻𝑑(𝛾), respectively, are used, via a bisection technique, to 

improve the approximation of the lower bound. Specifically, the midpoints, 𝑚𝑗 =

√𝜔𝑗𝜔𝑗+1 or 𝑚𝑗 = (𝜔𝑗+𝜔𝑗+1)/2, respectively, 𝑗 = 1, … , 𝑘 − 1, are obtained and 

the maximum over 𝑗 of 𝜎𝑀(𝐺(𝑖𝑚𝑗)) or 𝜎𝑀(𝐺(𝑒𝑖𝑚𝑗)) is computed. This maximum 

is then used as the new value of 𝛾𝑙. When no purely imaginary or unitary 

eigenvalues are found, the L∞-norm is set to as ‖𝐺‖𝐿∞
= 𝛾𝑙. For continuous-time, 

standard systems, all 𝛾 values are larger than or, sometimes, equal to 𝜎𝑀(𝐷). 
The pencils 𝐻𝑐(𝛾) and 𝐻𝑑(𝛾) have a special structure: 𝐻𝑐(𝛾) is a skew-

Hamiltonian/Hamiltonian pencil, and 𝐻𝑑(𝛾) is a generalization of a symplectic 

pencil. Consequently, their spectra have symmetry with respect to both real and 

imaginary axes, or with respect to the unit circle in the complex plane, respectively. 

Finding reliable and accurate eigenvalues of these pencils is key for avoiding 

failures and for increasing the rate of convergence of the L∞-norm computational 

algorithms. In order to make this possible, the pencils 𝐻𝑐(𝛾) and 𝐻𝑑(𝛾) are 

transformed to some equivalent even matrix pencils, and then to skew-

Hamiltonian/Hamiltonian pencils, whose spectra can be computed with structure-

preserving algorithms [11], [12]. 
 

2. Computation of eigenvalues 

 

Even numerically stable algorithms for eigenvalue computation may deliver very 

inaccurate results when applied to the matrix pencils 𝐻𝑐(𝛾) and 𝐻𝑑(𝛾). The matrix 

to be inverted in (5) is very ill-conditioned if 𝛾 is close to a singular value of 𝐷. 

This loss of accuracy can be avoided by replacing 𝐻𝑐(𝛾) and 𝐻𝑑(𝛾) by some 

extended skew-Hamiltonian/Hamiltonian matrix pencils [5], �̅�𝑐(𝛾)  and �̅�𝑑(𝛾), of 

order 2�̅� ∶= 2𝑛 + 𝑝 + 𝑚 + 𝑟, which have the same finite eigenvalues as the 

original pencils, but only use the given data. The generalized Cayley transform and 

an additional drop/add transformation [7] are used to get �̅�𝑑(𝛾). This way, the unit 
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circle in the complex plane is mapped to the imaginary axis. The number 𝑟 is 0 if 

2𝑛 + 𝑝 + 𝑚 is even, and it is 1, otherwise. More details are given in [5], [10].  
There are special algorithms which exploit the structure of the pencils 𝐻𝑐(𝛾) or �̅�𝑑(𝛾) and 

ensure the needed symmetry of the spectra [11], [12]. These algorithms reduce a regular 

real skew-Hamiltonian/Hamiltonian matrix pencil of order 2�̅�, 𝜆𝑆 − 𝐻, where 𝑆 is skew-

Hamiltonian ( 𝑆𝐽 = (𝑆𝐽)𝑇 ) and 𝐻 is Hamiltonian ( 𝐻𝐽 = −(𝐻𝐽)𝑇 ), to the following form 

 𝑄1
𝑇𝑆𝐽𝑄1𝐽𝑇 = [

𝑆11 𝑆12

0 𝑆11
𝑇 ],   𝐽𝑄2

𝑇𝐽𝑇𝑆𝑄2 = [
𝑇11 𝑇12

0 𝑇11
𝑇 ],   𝑄1

𝑇𝐻𝑄2 = [
𝐻11 𝐻12

0 𝐻22
],  

 𝐽 ≔ [
0 𝐼�̅�

−𝐼�̅� 0
],  (6) 

where 𝑄1 and 𝑄2 are orthogonal matrices, 𝑆11, 𝑇11, 𝐻11 are upper triangular, 𝐻22
𝑇  is 

upper quasi-triangular (that is, block upper-triangular with 1 × 1 and 2×
2 diagonal blocks), and the formal matrix product 𝑆11

−1𝐻11𝑇11
−1𝐻22

𝑇  is in a real 

periodic Schur form [13]. The first two matrices in (6) are skew-Hamiltonian and 

the third one is Hamiltonian. The spectrum of  𝜆𝑆 − 𝐻 is given by 

 𝜆(𝑆, 𝐻) = ±𝑖√𝜆(𝑆11
−1𝐻11𝑇11

−1𝐻22
𝑇 ) , (7) 

and it can be obtained by using the diagonal blocks. It follows that the finite, purely 

imaginary eigenvalues correspond to the 1 × 1 diagonal blocks of the formal 

matrix product. Consequently, there will be no error in the real parts, hence, a 

robust and reliable detection of the desired eigenvalues is achieved. Details are 

given in [12]. Note that he submatrices 𝑆11 and 𝑇11 in (7) can be singular. The 

eigenvalues of the formal matrix product are found using the iterative periodic QZ 

algorithm (pQZ) [13]. To increase the convergence rate, implicitly defined shifts 

are used and applied via an embedding of the Wilkinson polynomial. But the 

implicit approach may not converge for some periodic eigenvalue problems, since 

the shifts involved may be indefinitely unsuitable. Several improvements have 

been proposed in [14]-[16] to avoid failures and reduce the number of iterations. 

For instance, in a semi-implicit approach [15] the shifts are chosen based on 

eigenvalues computed explicitly using a special pQZ algorithm for subproblems of 

order two. Moreover, it was found that alternating implicit and semi-implicit 

iterations offers the advantages of both approaches, improving the behavior of the 

pQZ algorithm [17]. 

If 𝐸 = 𝐼𝑛, the pencil 𝐻𝑐(𝛾) in (5) represents a standard eigenvalue problem for a 

Hamiltonian matrix. Let 𝐷(𝛾) be the block matrix whose inverse appears in (5). If 

𝐷(𝛾) is well-conditioned, then it is more efficient to compute the eigenvalues of 

this Hamiltonian matrix than the eigenvalues of the skew-Hamiltonian/Hamiltonian 

matrix pencil, �̅�𝑐(𝛾). This approach can be used if 𝐷 = 0 or if the condition 

number of 𝐷(𝛾), 𝑐(𝐷(𝛾)), is sufficiently small; 𝑐(𝐷(𝛾)) can be exactly computed, 

using the extreme singular values of the matrix 𝐷. Indeed, 1/𝑐(𝐷(𝛾)) = (𝛾2 −

𝜎𝑀
2 )/(𝛾2 − 𝜎𝑚

2 ), where 𝜎𝑀 and 𝜎𝑚 are the maximum and minimum singular values 

of 𝐷(𝛾). Note that 𝛾, as well as the above ratio, increase during iterations, and 

therefore the condition number decreases. Structured algorithms for solving 

eigenvalue problems for Hamiltonian matrices are described in [18], [19]. The data 
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matrices in the Hamiltonian 𝐻𝑐(𝛾) can be used directly via the symplectic URV 

decomposition, 

 𝑈𝑇𝐻𝑐(𝛾)𝑉 = [
𝑇 𝐺
0 𝑆𝑇], 

and the periodic Schur decomposition, where 𝑈 and 𝑉 are orthogonal symplectic 

matrices, 𝑆 is in a (upper) real Schur form, and 𝑇 is upper triangular. Such an 

algorithm is backward stable and preserves the eigenvalue pairings in finite 

precision arithmetic. 
The computation of spectra for Hamiltonian matrices and skew-Hamiltonian/Hamiltonian 

matrix pencils, as well as for formal matrix products involved in periodic Schur and qz 

decompositions, can be performed using subroutines from the SLICOT Library [20], 

available on GitHub, https://github.com/SLICOT/SLICOT-Reference. 

 

3. Implementation issues 
 

A preliminary version of the L∞-norm solver has been developed several years ago 

[5], [6]. Recently, a new version, linorms, has been prepared and tested. The solver 

works on both continuous- and discrete-time, standard or descriptor systems, with 

or without a feedthrough matrix 𝐷. The given matrices 𝐴, 𝐸, 𝐵, and 𝐶 can 

optionally be balanced, to make the rows and columns of the system pencil matrix 

as close in norm as possible. Additional scaling can be performed for matrices with 

too large or too small elements, to avoid overflows during computations. There are 

options to check the properness of the transfer function matrix of a continuous-time 

descriptor system, and to reduce the system order (before computing the L∞-norm), 

by removing all uncontrollable and unobservable poles. It is possible to specify an 

estimate of the frequency where the gain of the frequency response would achieve 

its peak value. The tolerance ε used to set the accuracy in determining the L∞-norm 

should be specified, but other tolerances have default values. The optimal sizes of 

the real and complex working arrays can be computed by the solver using a special 

call with those sizes set to −1; the two returned values can then be given as input 

arguments in a second solver call. The use of this feature could significantly reduce 

the computing time for systems with large order. The selection of the test 

frequencies for finding a lower bound of the L∞-norm has been improved. For 

discrete-time case, only the eigenvalues with magnitude at most 𝜋 are considered 

(since this selection is performed before the transformation which maps the unit 

circle to the real axis). During the iterative process, the original data matrices (but 

possibly modified by the optional scaling and/or by reducing the order when testing 

the system properness) are used. This could ensure more accurate results. Modified 

tolerances have been employed for detecting eigenvalues on the boundary of the 

stability domain. 

The latest implemented versions for solving skew-Hamiltonian/Hamiltonian 

eigenvalue problems, as well as for the pQZ algorithm, have been used. A version 

of the skew-Hamiltonian/Hamiltonian solver that works on panels of columns of 

the pencil matrices is called for large order problems, aiming to better exploit the 

memory hierachy of modern computers, and hence increase the computational 

https://github.com/SLICOT/SLICOT-Reference
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efficiency. The standard continuous-time case with 𝐷 = 0 is dealt with directly, in 

the most efficient way, by solving eigenvalue problems for Hamiltonian matrices 

during iterations. A similar approach is used for standard continuous-time systems 

with 𝐷 ≠ 0 if the condition number of 𝐷(𝛾0) satisfies the inequality 𝑐(𝐷(𝛾0)) <

0.01 𝜀𝑀
−0.5 ≈ 6.71 ∙ 105, where 𝛾0 is the 𝛾 value at the beginning of the iterative 

process (𝛾0 > 𝜎𝑀(𝐷) for this case). Otherwise, the skew-

Hamiltonian/Hamiltonian solver is called. 
 

4. Numerical results 
 

Extensive testing has been performed to evaluate the linorms solver. The 

computations have been done in double precision on an Intel Core i7-3820QM 

portable computer (2.7 GHz, 16 GB RAM). An executable MEX-file has been built 

using the linorms source code, SLICOT routines and MATLAB-provided optimized 

LAPACK and BLAS routines. Tests with with LTI systems from the COMPleib 

collection [21] have been run. The results have been compared to those returned by 

the MATLAB function norm from Release 2021b.  

The COMPleib collection includes 124 standard continuous-time systems (𝐸 = 𝐼𝑛), 

with several variations. All but 16 problems (for systems of order larger than 2000, 

with matrices in sparse format) have been tried. The number of solved examples is 

152. The tolerance √𝜀𝑀 has been used for all runs. The relative error between the 

results returned by norm and linorms has usually been of the order of √𝜀𝑀, sometimes 

much smaller. Singular 𝐸 matrices have been obtained by setting 𝐸𝑛𝑛 = 0. 
 

Figures 1  ̶  3 present the performance results for all 152 COMPleib examples, with 

𝐸 = 𝐼𝑛 and 𝐷 = 𝐷1 ∶= [ 𝐷21 0 ], where 𝐷21 is defined in [21] and the zero 

submatrix has size (𝑝, 𝑚). The sums of the total time needed by norm and linorms for 

all systems are 651.26s and 176.87s, respectively. The time for linorms has always 

been smaller than that for norm. The minimum, maximum, mean and median values 

of the CPU time ratios are 1.359, 360.29, 19.31, and 12.97, respectively. The ratios 

have been limited to 100 in Fig.2. There are eight examples, AC11, CSE1, CSE2, 

PAS, CM3 ̶ CM6, with relative error larger than √𝜀𝑀 . For AC11 and PAS, linorms 

found an infinite L∞-norm, while norm found values of order 1019. For CSE1 and 

CSE2 linorms returned values  larger than 1015 and  1014, while norm computed 

values of order 1016 and  1017, respectively. The remaining four examples have 

errors of orders between 10−8 and  10−6. In Fig. 3, the relative errors are taken as 

zero, if a solver found an infinite value, and the other found a value larger than 

1/𝜀𝑀 . Moreover, in order to use a logarithmic scale, all zero error values have 

been replaced by the closest power of 10 that is 10 times smaller than the smallest 

nonzero error value. 
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Fig.1. CPU times in seconds for 152 COMPleib examples (𝐷 = 𝐷1), using linorms and norm. 

 

 
 

Fig.2. Ratios of the CPU times for norm and linorms for 152 COMPleib examples (𝐷 = 𝐷1). 

 

 
 

Fig.3. Relative error of the L∞-norm computed by linorms for 152 COMPleib examples (𝐷 = 𝐷1). 
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Figures 4 and 5 display the ratios of CPU times for norm and linorms, and the 

relative errors, respectively, for all large HF2D examples, with 𝐸 = 𝐼𝑛 and 𝐷 =
𝐷1 . These include the examples with the smallest ratios in Fig.2. Still, the 

corresponding time ratios are between 1.35 and 6.21. All their relative errors are 

smaller than √𝜀𝑀  .  
Figure 6 displays the CPU times for all COMPleib examples, taken as discrete-time, when 

the matrix 𝐸 is singular (𝐸1:𝑛−1,1:𝑛−1 = 𝐼𝑛−1, 𝐸𝑛𝑛 = 0) and 𝐷 = 0. A similar behavior 

appears for 𝐸 = 𝐼𝑛  .  

Figures 7 and 8 show the CPU times and the relative error, respectively, for all 

examples, considered as discrete-time systems, with 𝐸 singular and 𝐷 = 𝐷1 . The 

sums of the total time needed by norm and linorms are 604.55s and 418.18s, 

respectively. The minimum, maximum, mean and median values of the CPU time 

ratios are 0.42, 1882.9, 26.92 and 7.87, respectively. There are 27 examples for 

which linorms needed more CPU time than norm: JE1, CSE2, TL, and all large 

HF2D examples (numbered 82 : 105 in the figures), but the time differences 
 

 
 

Fig.4. Ratios of the CPU times for norm and linorms for the large HF2D COMPleib examples (𝐷 =
𝐷1). 

 

 
 

Fig.5. Relative error of the L∞-norm computed by linorms for the large HF2D COMPleib examples 

(𝐷 = 𝐷1). 
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for the first three examples are small. For 𝐷 = 𝐷1 , the large HF2D examples have 

𝑛 ≥ 256, and 𝑚 = 𝑛 + 2, and consequently, the order 2�̅� of the skew-

Hamiltonian/Hamiltonian problem is big. Other examples with even larger order 𝑛, 

but with small values of 𝑚, have been solved faster by linorms, so that the total CPU 

time was smaller than for norm. There are ten examples, DIS3, IH, CSE2, EB1, 

EB2, TF1  ̶  TF3, NN11, and NN18, for which the relative error is larger than √𝜀𝑀 . 

For CSE2, the error is of order 10−5. For EB1 and EB2, norm found values of order 

1015, while linorms found larger values, but with less than one order of magnitude. 

For the remaining seven examples, norm found values of order 1016 or much larger, 

while linorms found infinite values. 
 

 
 

Fig.6. CPU times in seconds for 152 COMPleib examples, taken as discrete-time (𝐷 = 0), using 

linorms and norm. 

 

 
 

Fig.7. CPU times in seconds for 152 COMPleib examples, taken as discrete-time (𝐷 = 𝐷1), using 

linorms and norm. 
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Fig. 8. Relative error of the L∞-norm computed by linorms for 152 COMPleib examples, taken as 

discrete-time (𝐷 = 𝐷1). 

 

 

This section is ended by discussing the results for the classic example in [22], 

𝐴 = [

−0.08   0.83
−0.83 −0.08

 
  0      0
  0       0

0         0
0         0

  
−0.7 9
−9 −0.7

] , 𝐵 = [

1
0

1
0

1
0

−1
0

] , 𝐶 [
0.4 0 0.4 0
0.6 0   1   0

] ,

𝐷 = [
0.3 0
0 −0.15

] . 

For getting a result with five digits of accuracy, 17 bisection iterations are reported 

in [22], while linorms performed just two iterations to achieve at least eight digits of 

accuracy. The L∞-norm computed by linorms is 6.4405165308; its relative error (to 

the value returned by MATLAB function norm) is about 7.11 ∙ 10−11. Similarly, 

the relative error in the correponding frequency is about 1.15 ∙ 10−6. This 

illustrates a significantly improved performance. 
 

5. Conclusions 

 

A very important characteristic value for a descriptor system is the L∞-norm of its 

corresponding transfer function matrix. The computation of this norm is essential 

in robust control, model order reduction, and other applications. Efficient and 

reliable algorithms for finding the L∞-norm for continuous- and discrete-time 

descriptor systems have been briefly described. The underlying Hamiltonian or 

symplectic structure of the associated matrix pencils is exploited. The original 

pencils are transformed into skew-Hamiltonian/Hamiltonian pencils, conserving 

the finite eigenvalues for continuous-time systems; for discrete-time systems the 

eigenvalues are mapped by a Cayley transform. This endeavor allowed the use of 

structure-exploiting algorithms for eigenvalue computation during the iterative 

process. An improved solver has been developed and will be made available in the 
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SLICOT Library. Numerical results and comparisons with the state-of-the-art 

MATLAB function norm illustrate the good performance and effectiveness of this 

new solver. 
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