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Abstract. As the integration of cyber and physical components becomes increasingly 

prevalent in modern systems, ensuring the dependability of Cyber-Physical Systems (CPS) 

has emerged as a critical research area. The present paper aims to present a comprehensive 

analysis of the recent advances in the field of dependable CPS. Firstly, we present an 

analysis on the evolution of the published papers in the past years and introduce the 

concepts of dependability and CPSs in the context of Industry 4.0. Secondly, some 

strategies and challenges that have been encountered in the recent literature for enhancing 

the dependability of CPS are also presented. Finally, two case studies that highlight the 

interdependencies between the concepts of dependability and CPS are reviewed. The first 

one presents the dependability of an object identification system that relies on radio 

frequency identifier, which can be used in medical services. The second case study shows 

various techniques for predicting the remaining useful life of a turbofan jet engine using 

Machine Learning and Deep Learning techniques. 
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1. Introduction 

 

As the microcontroller evolved in having more computational resources (i.e., 

increased memory and processor frequency), embedded devices started to be 

developed. By integrating a microcontroller, the devices started to fulfill a wider 

range of functionalities, from monitoring, triggering alarms, to scheduling actions. 

The next step was for the developed system to get even smarter and start to interact 

with the physical world. In the case of such systems (Cyber-Physical Systems), 
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physical and software components are deeply intertwined, as the interaction with 

each other changes with context.  

Compared to an embedded system, Cyber-Physical Systems (CPS) are using 

computations and communication deeply embedded in and interacting with 

physical processes to add new capabilities to physical systems [1]. At first glance, 

CPS resemble to the Internet of Things (IoT), where objects (e.g., devices, sensors, 

wearable computers, and autonomous physical systems) are connected via a 

communication network. Even if IoT and CPS are sharing the same basic 

architecture, in order for CPS to transform the world through systems that respond 

more quickly, are more precise, and provide large-scale and distributed 

coordination, it is clear that a higher combination and coordination between 

physical and computational elements is needed [2].  

From the previous statement, it can be observed that during CPS implementation, 

dependability analysis is of great importance, as the final products involve 

dependable services that are accountable and adaptable, and through which the 

interaction with the physical world must be safe [3]. All the previous attributes are 

components of the dependability tree, which will be presented later in the paper.  

The following is the structure of the paper. Section two presents a literature 

analysis that shows the evolution of the published papers in dependable CPSs. 

Section three introduces the concepts of dependability and CPSs. Section four 

presents the strategies and challenges that are encountered while developing 

dependable CPSs. Section five presents two case studies, that is, the dependability 

of a radio frequency identifier (RFID) Object-Identification System and machine 

learning (ML) based techniques for predicting the remaining useful life (RUL) of a 

turbofan jet engine. Finally, section six presents the conclusions. 

 

2. Literature analysis of Dependable Cyber-Physical Systems 

 

Through a systematic analysis of publications in the IEEE database using the 

specific keywords "dependable cyber-physical systems", a graph was generated to 

present the number of scientific publications on the topic of CPS dependability. As 

illustrated in Fig. 1, the number of publications began to rise in 2008, with a steady 

increase observed until 2014, followed by a peak in activity from 2014 to 2017. 

This trend, aligning with technological advancements, showed a brief decline from 

2017 to 2019 before experiencing a significant surge, maintaining a high level of 

interest in academic research until the end of 2021. 

An analysis of the IEEE database is presented in Fig. 2 in terms of the number of 

publications according to types of scientific publications. The study of 

dependability CPSs had the highest interest in conferences, with 317 published 

papers. Journals had the second-highest interest, with 227 published papers. 
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Additionally, four publications were identified in magazines, and three were 

identified in early access articles. 

 

 
Fig. 1. The total number of publications on Dependable Cyber-Physical Systems 

between 2008 and 2022. 

 
 

Fig. 2. Distribution of publication types on Dependable Cyber-Physical Systems. 

 

The chart in Fig. 3 displays data from IEEE's research on CPS dependability 

publication topics, organized by percentage. 
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Fig. 3. Representation of research paper topics in Cyber Physical Systems. 

From the chart, we can observe that data security holds the greatest percentage 

(20%) of this study. Another significant percentage (17%) was dedicated to the 

topic of artificial intelligence. Cloud computing ranks third with the highest 

percentage at 14%, behind other important topics including embedded systems 

(10%), the Internet of Things (10%), adaptive control (10%), control system 

synthesis (10%), and nonlinear control systems (9%). 

 

3. Fundamentals of dependability and Cyber-Physical Systems 

 

3.1. Overview of Dependability 

 

Through the years, multiple definitions of dependability have been stated [4]. Each 

one of them attempted to define dependability based on the available systems at 

that time and the services that were provided. A new definition for dependability, 

considering the current developments, is proposed in [5]: „The dependability of a 

computer system is the ability to deliver a service that can justifiably be trusted. 

The service delivered by a system is its behavior as it is perceived by its user(s); a 

user is another system (physical or human) that interacts with the former at the 

service interface”. 

From the previous definition, it can be observed that dependability is a complex 

analysis that involves considering, in addition to the physical, technological, and 

structural characteristics of a system, the effects of the environment and operating 

conditions [6]. All these details are needed to properly model and analyze the 

dependability of a system while trying to pinpoint its potential weaknesses and 

improve its capability to operate correctly. 

To achieve a system characterization from a dependability perspective, proper 

measurable quantities are needed to predict with the lowest possible degree of 

uncertainty the following behaviors of the system [6]: 

• What is the system’s behavior in operation during its entire useful life? 
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• What will cause malfunctions or failures during operation, and with what 

frequency? 

• What might be the outage duration? 

• What resources are needed to maintain the system in a correct operating state 

and the resources needed? 

The International Federation for Information Processing working group 10.4 

describes dependability in terms of three aspects: attributes, means, and threats. 

The three from Fig. 4 describe the threats to, the attributes of, and the means to 

achieve dependability [7]. 

 
Fig. 4. The dependability Tree - A schematic representation of dependability attributes, 

threats, and means. 

 

As the services evolved, being provided through an internet connection, security 

was included as a component of dependability [6]. When it comes to assessing the 

dependability attributes, the most used when evaluating the dependability of a 

system are:  

• reliability – from a computing point of view, attribute reliability would refer to 

the probability of having the system operating continuously, without failure, in a 

given interval and under specified operating and environmental conditions.  

• availability – from a computing point of view, attribute availability describes the 

probability of a system operating at a given point in time independently of the 

number of failures already sustained by the system. 

• maintainability – from a computing point of view, attribute maintainability 

refers to the probability of a system being recovered to an operating state because 

of failures. 

 

3.2 Overview of Cyber-Physical Systems 

 

Cyber-Physical Systems (CPS) merge computational and physical capabilities to 

interact with the human environment through various mechanisms, integrating a 

range of communication and control features that enhance their application [8-10]. 
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Unlike traditional embedded systems, CPS uniquely benefit from utilizing multiple 

devices within a network [11]. Consequently, networks and embedded computers 

within CPS control and monitor physical processes, engaging with these systems 

through a feedback loop. This interaction significantly influences both the 

computations and the physical processes, creating a dynamic interplay [12]. 

CPS are commonly used in areas with direct interaction in various activities, 

including but not limited to smart assisted living, advanced automotive systems, 

highly reliable medical systems, defense systems, traffic safety and control, 

aeronautics, process control, environmental control, energy conservation, and 

distributive robotics and manufacturing [13]. 

The CPS connection mode is interpreted by [16] as a multitude of interconnected 

devices that perceive the physical environment through actuators and sensors. The 

operation of these types of systems is considered by [17] as a larger, well-defined, 

secure system that processes and receives information from the physical 

environment in real time. CPS benefits from an interdisciplinary capability, 

merging engineering areas with models, such as mechanical, biomedical, 

environmental, chemical, electrical, aeronautical, and industrial engineering, with 

computational methods and models [10]. In [18], it is said that an important 

perspective on these systems is related to the management of physical processes by 

monitoring the received values based on computational intelligence, aiming at a 

good perception of the analyzed environment, and ensuring real-time decisions 

with a high degree of accuracy. 

The integration of CPS inside the manufacturing sector, as well as in logistics and 

services, has the potential to bring about a significant transformation in the context 

of Industry 4.0. This integration has the capability to autonomously generate 

significant economic opportunities [19]. The significance of CPSs and big data in 

the context of Industry 4.0 is explained in paper [20]. This explanation serves as an 

illustration of the substantial potential for advancement in industry, particularly in 

terms of enhancing resources. 

 

4. Strategies and Challenges for Enhancing Dependability of CPSs 

 

This section aims to present a non-exhaustive collection of strategies that are used 

in the recent literature to increase the dependability of CPSs as well as some 

research challenges [21]. 

Various frameworks are being developed to increase the dependability of CPSs in a 

wide range of applications such as: IoT systems [22] , water-based systems [25], 

[26] or cloud-based systems [27], [28]. In paper [22] the technique used to increase 

the dependability of a CPS is represented by an end-to-end application capable of 

detecting the failures of the CPS as well as the associated risks. The CPS is 

represented by a set of Wi-Fi sensors interconnected to a wireless network that can 
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send data measuring temperature, humidity, pressure, carbon dioxide, and light 

intensity to a server application that interprets the results using a dependability 

ontology. 

Paper [23] addresses the issue of dependability in CPS by using mathematical 

epidemiology theory to create a model for monitoring CPS-IoT systems. This study 

presents a unique reconfiguration strategy that incorporates network segmentation, 

clustering, and node migration to improve the safety of CPS-IoT subsystems. The 

CPS-IoT monitoring model, which is being developed, has significant importance 

inside a CPS orchestration system. It utilizes a closed loop mechanism to enable 

thorough surveillance and actuation. 

 The study conducted by Ermeson Andrade et al. [25] presents an approach that 

employs stochastic Petri nets (SPNs) for the purpose of modeling and evaluating 

the reliability of intelligent CPSs. The models consider a range of cyber and 

physical components, allowing the examination of measures like availability, 

downtime, dependability, and message delivery probability. The viability of this 

methodology is shown via the assessment of an intelligent CPS implemented inside 

a water treatment facility. The result is the reduction of the downtime from 12 

hours to 8 minutes.  

ML, DL and Transfer Learning (TL) play a crucial role in dependable systems, 

contributing to various aspects of system reliability, security [29], [30], and fault 

prognosis and diagnosis [31], [32]. For instance, the study conducted by Dhanke 

J.A. et. al. [30] presents a theoretical framework for improved communication, 

more specifically, issues related to communication failures and various forms of 

network attacks in the context of IoT based CPS. To classify the attacks, the 

authors used supervised learning-based algorithms such as: Naïve Bayes, 

multilayer perceptron (MLP) or multinomial logistic regression, obtaining an 

accuracy of 85% on the test set. Paper [31] presents a study that examines the use 

of correlation and causation metrics to identify and measure the level of dependent 

connections across the various components of a CPS and predict imminent faults 

using Artificial Neural Networks (ANNs). The authors conducted experiments on 

two smart power grids, that is, IEEE 14-bus and IEEE 57-bus test systems [33]. 

 In addition, ML, DL and TL techniques are used to increase the dependability to 

Fault-Tolerant Control CPSs. More specifically, supervised ML algorithms such as 

K-Nearest Neighbors (KNN), Support Vector Machines (SVM) or decision trees 

are used to predict faults in rolling bearings [34], [35], automotive and automobile 

gearbox [36], [37] or wind turbines [38], [39] fault detection.  

Convolutional Neural Networks (CNN) is a branch of DL algorithms that falls 

under the category of supervised learning as well. The efficacy of this approach has 

been shown in the domains of image processing, computer vision, and object 

detection and recognition. When considering fault diagnostic models that use 

CNNs, it is observed that 2D CNNs encounter challenges related to the curse of 
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dimensionality when applied to 1D inputs such as time series. This open problem 

was successfully addressed in paper [40] using the wavelet transform. Table 1 

presents a summarized overview of the previously presented papers, highlighting 

the strategies that were used to enhance the dependability of CPSs as well as the 

objective or the CPS that was used.  

Apart from the classical centralized approaches, Federated Learning (FL) is also 

used to increase the dependability for CPSs. FL is a ML-based technique that 

involves training a model on decentralized edge devices, such as mobile phones, 

IoT devices, or local servers. This training process occurs without the need for data 

exchange between these devices, since each keeps their own local data samples 

[41]. 

For instance, paper [42] proposes an FL-based framework for intrusion detection in 

IoT networks. In a more precise manner, the authors put up a scoring system with 

the objective of assessing participants by using the Manhattan similarity measure. 

Next, the anomalous data is eliminated via the use of clustering methods. 

 
Table 1. Summarized Overview of the Strategies used to Enhance Dependability in CPSs 

Paper Strategies CPS 

[22] 
Failure Mode and Effects Analysis 

(FMEA) 

A set of Wi-Fi sensors interconnected to a 

wireless network that can send data 

measuring environmental information. 

[23] Epidemic states and diffusion sets 
IoT based system used for monitoring of an 

industrial area. 

[25] SPNs Water treatment facility 

[30] 
Naïve Bayes, MPL and Multinomial 

Logistic Regression 

 A digital platform integrated with electrical 

devices that facilitates the provision of 

services. 

[31] ANNs IEEE 14-bus and IEEE 57-bus test systems 

[34] 
Hierarchical symbol dynamic entropy 

and binary tree SVM 
Rolling Bearings 

[35] Fusion between CNNs and SVM Rolling Bearings 

[36] Linear discriminant analysis and SVM Steering actuator 

[37] Finite element analysis and KNN Spur gears 

[38] 
Variational mode decomposition and 

KNN  
Wind Turbine 

[39] Shannon-Wavelet SVM Wind Turbine 

[40] Wavelet packet transform and CNN Rolling Bearings 

 

5. Case Studies from literature 

 

5.1. Dependability of an RFID Object-Identification System 

 

One industry that benefits from CPS evolution is the medical industry. CPS can be 

used for tagged medications, where RFID is used to monitor the drugs 

administered to patients and to monitor patients and their live signs (e.g., 

https://www.sciencedirect.com/topics/engineering/shannon-wavelet
https://www.sciencedirect.com/topics/engineering/support-vector-machine
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temperature, heartbeats, blood pressure) [6]. Through such implementations, not 

just the patients are benefiting from improved medical services that are focused on 

their needs, but also the hospitals by alleviating the burden of inventory 

management. Additionally, through monitoring patients, it is possible to design 

CPS capable of identifying or predicting whether hospital staff can be 

overwhelmed by current and new patients [43], [44]. 

A system combining the previously mentioned capabilities of medical CPS, 

designed to monitor patients’ activity, was proposed in [45]. By using a Peper robot 

and radio-frequency identification tags, the authors have developed an object-

identification system that can be used in the monitoring of drug administration 

among the elderly, Fig. 5. 

 
Fig. 5. Patient-monitoring architecture. 

 

To identify the system’s weakest components and their impact on system 

availability, reliability block diagrams (RBD) analysis was performed [46]. 

However, the RBD analysis does not allow for the evaluation of the impact 

processes that take during RFID communication, such as tag identification or 

solving the collision process that might appear during this process. Such events can 

have a great impact on the availability of the system. 

When looking to compute the availability of the system by including the 

relationships between operating conditions and the events that are occurring during 

operation, a different approach is needed to model the events and time conditions. 

Such approach is exemplified by the SPNs [47], which facilitate the creation of a 

graphical representation for the formal description of systems, while the dynamics 

are characterized by concurrency, synchronization, mutual exclusion, and conflicts. 
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Through SPN, the system was described by symbols that describe the events, 

transitions, and states of the system, Fig. 6. 

 
Fig. 6. Basic graphical symbols of SPNs. 

 

Through the analysis performed, it was revealed that when it comes to RFID 

monitoring, a compromise between the number of tags and the system responses 

needs to be made. Most papers when discussing RFID object identification focus 

on determining the maximal throughput that can be obtained based on the number 

of slots present in a query frame and the number of tags present within the range of 

the RFID reader’s antenna. However, throughput can be seen from two 

perspectives, either as the number of queries per second or the number identified in 

an amount of time. To solve this issue, the authors proposed a cost function that has 

the purpose of identifying the optimal system tag number that can be identified in 

the shortest identification time while attending to the highest possible probability 

of achievement. 

Through the performed analysis and proposed models, it was revealed that even if 

an increased number of tags around the RFID reader would translate into a reduced 

cost value, the probability of the event happening is quite small. Another 

disadvantage was also the uncertainty of such an event occurring, as there were 

scenarios that had the same probability of occurrence. In the end, the analysis 

revealed that without a proper analysis, it is possible to implement a system that 

would have a high throughput but with large time delays to achieve it. 

 

5.2. Remaining Useful Life Prediction for Turbofan Jet Engines 

 

Prognostics and Health Management (PHM) is a subject that leverages historical, 

current, and future data about the environmental, operational, and utilization 

aspects of equipment [48]. Its primary objective is to identify and assess the 
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deterioration, diagnose defects, and implement proactive measures to effectively 

manage failures. One way to enhance the dependability of CPS is to increase its 

maintainability. Therefore, Predictive Maintenance (PdM) is one of the most 

studied approaches to increase the maintainability of the CPSs as by using 

technique one predict failures before their occurrence using ML or DL [49]. This 

case study aims to present various ways to predict the Remaining Useful Life 

(RUL) of a Turbofan Jet Engine CPS using ML and DL techniques. One of the 

most popular datasets for predicting the RUL of a turbofan jet engine in the 

literature is the one provided by NASA [52]. The dataset was simulated using the 

Commercial Modular Aero‐Propulsion System Simulation (C‐MAPSS) tool and 

divided into four subsets denoted FD001, FD002, FD003 and FD004 respectively 

[53]. Regarding the operational conditions, it is noteworthy that each subset has the 

potential to include either one or six distinct operating conditions. These conditions 

are determined by three key factors: altitude, which ranges from 0 to 42,000 feet; 

throttle resolver angle, which spans from 20 to 100 degrees; and Mach, which 

varies between 0 and 0.84. Regarding failure modes, each dataset may exhibit 

either one or two modes, namely HPC deterioration and fan degradation. Every 

subset comprises measurements obtained from a total of 21 sensors attached to 

different parts of the degrading engine which represent the dependent variables 

while the independent variable is the value RUL expressed in hours.  

The data preprocessing step is crucial in any ML-based algorithm to make sure that 

the model can learn the data correctly. Therefore, one common preprocessing 

technique involves the construction of a health index curve using autoencoders [54] 

or semi-supervised learning [55]. Regarding models that are suitable for this task, 

the literature mainly covers Recurrent Neural Networks [56], Long-Short Term 

Memories (LSTMs) or CNNs. Paper [57] introduced a supervised domain 

adaptation methodology that leverages labeled data from the target domain to 

refine a bidirectional LSTM model, which was first trained on the source domain. 

Additionally, paper [58] introduced hybrid models by integrating the CNN layers 

with LSTM layers. The use of such ensemble models has shown a superior level of 

precision compared to other conventional techniques. 

 

6. Conclusion 

 

In conclusion, the investigation into dependable CPSs uncovers a terrain abundant 

in challenges, opportunities, and inventive resolutions. The challenges that have 

been discovered highlight the necessity of multidisciplinary collaboration, which 

involves the integration of professionals from the fields of computer science, 

engineering, and artificial intelligence.  

Even though the ML and DL provide great advantages when it comes to enhancing 

dependability in CPS, some drawbacks stand out. Firstly, ML techniques are 
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strongly dependent on the availability and quality of data. One of the primary 

challenges faced by professionals in this field is the scarcity of data that is not 

biased and is correctly collected and labeled. Secondly, no matter how qualitative 

the data is, in the future there is the potential for the model to become ineffective as 

the volume of data grows. Hence, to maintain the functionality of the algorithm, it 

is necessary to engage in ongoing monitoring and maintenance. 

This paper contributes to the existing body of knowledge by integrating theoretical 

perspectives with real case studies, providing guidance for researchers and 

practitioners in their efforts to develop CPSs that are both robust and secure. 
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