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Abstract. Generalized Lyapunov equations are often encountered in systems theory, 

analysis and design of control systems, and in many applications, including balanced 

realization algorithms, procedures for reduced order models, or Newton methods for 

generalized algebraic Riccati equations.  An important application is the computation of the 
Hankel singular values of a generalized dynamical system, whose behavior is defined by a 

regular matrix pencil (E, A), with E nonsingular.  This application uses the controllability 

and observability Gramians of the system, given as the solutions of a pair of related 

generalized Lyapunov equations.  For a stable system, the solutions of both equations are 

non-negative definite.  The paper summarizes the numerical algorithms for complex 

continuous- and discrete-time generalized systems.  Such solvers are not yet available in the 

SLICOT Library or MATLAB toolboxes, but could be an important addition.  The 

developed solvers address the essential practical issues of reliability, accuracy, and 

efficiency. 
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1. Introduction 

 
Stable generalized complex Lyapunov equations can be written as 

                   op(𝐴)𝐻𝑋op(𝐸) + op(𝐸)𝐻𝑋op(𝐴) = −op(𝐵)𝐻op(𝐵),                     (1) 

                   op(𝐴)𝐻𝑋op(𝐴) − op(𝐸)𝐻𝑋op(𝐸) = −op(𝐵)𝐻op(𝐵),                     (2) 

in the continuous- and discrete-time case, respectively, where A, E ∈ 𝑪𝑛×𝑛, op(𝐵) 

∈ 𝑪𝑚×𝑛, the operator op(𝑀) is either 𝑀 or op(𝑀)𝐻 for any matrix 𝑀, and the 
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superscript 𝐻 denotes the conjugate transpose. (In the real case, 𝐻 is replaced by 𝑇, 

denoting transposition.) A necessary condition for the nonsingularity of the 

associated linear algebraic systems is that both A and E, for (1), or either A or E, for 

(2), are nonsingular. Since A and E have a symmetric role in (2), it may be 

assumed, without loss of generality, that E is nonsingular. The stability assumption 

means that 𝛬(𝐴𝐸−1)  ∈ 𝑪−, for (1), and 𝜚(𝐴𝐸−1) < 1, for (2), where 𝑪− is the 

open left half of the complex plane, and 𝛬(𝑀) and 𝜚(𝑀) are the spectrum and the 

spectral radius (i.e., the maximum moduli of the eigenvalues) of the matrix 𝑀, 

respectively. (See, e.g., [1] and the references therein.) Equivalently, the matrix 

pencil 𝐴 − 𝜆𝐸 has only stable eigenvalues in the continuous- or discrete-time 

sense. Note that the nonsingularity of 𝐸 implies the regularity of 𝐴 − 𝜆𝐸. These 

stable equations have a unique positive-semidefinite solution 𝑋, denoted 𝑋 ≥ 0, 

since op(𝐵)𝐻op(𝐵) ≥ 0. Then, 𝑋 can be written in a factorized form, 𝑋 = 

op(𝑈)𝐻op(𝑈), where 𝑈 is the Cholesky factor of 𝑋, if 𝑋 > 0. It should be noted 

that any matrix expressed in the form op(𝐵)𝐻op(𝐵) has real non-negative diagonal 

elements, since these elements are given by 𝑏𝑗
𝐻𝑏𝑗 = ‖𝑏𝑗‖

2
≥ 0, where 𝑏𝑗 is the j-th 

column of op(𝐵), and ‖𝑥‖ is the Euclidean norm of the vector 𝑥. For an identity 

matrix E, E = 𝐼𝑛 , and op(𝑀) = 𝑀, the standard stable Lyapunov equations are 

obtained, dealt with in [2]. Algorithms for solving real generalized Lyapunov 

equations have been proposed in [3]. These algorithms belong to the class of 

transformation methods, described in the seminal paper [4]. Solvers implementing 

these algorithms are available, e.g., in the SLICOT Library [5], [6] and in 

MATLAB Control System Toolbox [7] (based on SLICOT). Many algorithmic and 

computational details for Sylvester and standard Lyapunov equations are given, 

e.g., in [8]. General linear matrix equations are dealt with in [9]. 

This paper extends the results in [3] to complex equations. The complex case is 

theoretically simpler than the real case, since in the latter case the generalized 

Schur form (used to reduce the computational effort from the order of n6 operations 

to an order of n3 operations) can have 2×2 blocks on the diagonal, corresponding to 

complex conjugate eigenvalues, while in the former case, all diagonal blocks are 

1×1. However, the computational details should be carefully considered to obtain 

accurate and reliable solutions. Important issues in this endeavour are presented in 

this paper, accompanying the theoretical derivations of the needed formulas. 

This section is ended by presenting an important application: computation of the 

Hankel singular values of a dynamical system, which are essential input-output 

invariants. This application needs both forms of op(·). Specifically, consider a 

generalized system, 

                                𝐸𝜆(𝑥(𝑡)) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),   𝑦(𝑡) = 𝐶𝑥(𝑡)                          (3) 
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where 𝑥(𝑡) ∈ 𝑪𝑛, 𝐵 ∈ 𝑪𝑛×𝑚,  𝐶 ∈ 𝑪𝑝×𝑛, and 𝜆(𝑥(𝑡)) is the differential operator, 

d𝑥(𝑡)/d𝑡, or the advance difference operator, 𝜆(𝑥(𝑡)) = 𝑥(𝑡 + 1), for continuous- 

and discrete-time case, respectively. The Hankel singular values of (3) are the non-

negative square roots of the eigenvalues of the matrix product 𝑄𝑃, where 𝑃 and 𝑄 

are the controllability and observability Gramians, respectively, of (3), i.e., the 

solutions of the two closely related generalized Lyapunov equations, 

                     𝐴𝑃𝐸𝐻 + 𝐸𝑃𝐴𝐻 = −𝐵𝐵𝐻 ,     𝐴𝐻𝑄𝐸 + 𝐸𝐻𝑄𝐴 = −𝐶𝐻𝐶,                    (4) 

                     𝐴𝑃𝐴𝐻 − 𝐸𝑃𝐸𝐻 = −𝐵𝐵𝐻 ,     𝐴𝐻𝑄𝐴 − 𝐸𝐻𝑄𝐸 = −𝐶𝐻𝐶,                    (5) 

in the two cases, respectively. For a stable system, the product 𝑄𝑃 has theoretically 

only non-negative eigenvalues. But numerical computations performed without 

taking into account the symmetry and semidefiniteness of the solutions, might 

result in nonsymmetric or indefinite Gramians, due to accumulated rounding errors. 

Consequently, some computed Hankel singular values might appear as negative or 

even complex numbers. This proves how important is to ensure the reliability and 

accuracy of the computations. For this application, it is preferable to use the 

algorithms described below, which deliver the Choleky factors 𝑅𝑐 and 𝑅𝑜  of the 

Gramians, 𝑃 = 𝑅𝑐𝑅𝑐
𝐻, 𝑄 = 𝑅𝑜

𝐻𝑅𝑜 , with 𝑅𝑐 and 𝑅𝑜  upper triangular. Moreover, the 

matrix products 𝐵𝐵𝐻 and 𝐶𝐻𝐶 are not evaluated, and 𝐵 and 𝐶 are directly used. 

Then, the Hankel singular values of the system are the singular values of the 

product 𝑅𝑜𝑅𝑐. Consequently, they are numerically guaranteed to be real non-

negative. 

 

2. Basic computational steps 

 

Reduction to generalized Schur form. For general matrices 𝐴 and 𝐸, the first step 

in solving (1) or (2) is the computation of the (complex) generalized Schur form 

(GSF) of the matrix pencil 𝐴 − 𝜆𝐸, using the QZ algorithm, see, e.g., [10], [11] and 
the references therein. In the complex case, the QZ algorithm returns the reduced 

matrices, �̃� and �̃�, as well as the unitary transformation matrices, 𝑄, 𝑍 ∈ 𝑪𝑛×𝑛, 

𝑄𝐻𝑄 = 𝑄𝑄𝐻 = 𝐼𝑛  , 𝑍𝐻𝑍 = 𝑍𝑍𝐻 = 𝐼𝑛  , so that 

                                            �̃� = 𝑄𝐻𝐴𝑍,      �̃� = 𝑄𝐻𝐸𝑍,                                          (6) 

with both �̃� and �̃� upper triangular. Moreover, without loss of generality, the 

matrices are transformed so that the diagonal elements of �̃� be real non-negative. 

The diagonal elements of �̃� and �̃� define the eigenvalues 𝜆𝑖 of the pencil as 

rational complex numbers with numerators �̃�𝑖𝑖 and denominators �̃�𝑖𝑖 . 

Transformation of the right hand side. If op(·) = · , then premultiplying (1) and 

(2) by 𝑍𝐻 and postmultiplying them by 𝑍, and using the fact that 𝑄 and 𝑍 are 

unitary matrices, the following equations are obtained: 
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                   op(�̃�)
𝐻

�̃�op(�̃�) + op(�̃�)
𝐻

�̃�op(�̃�) = −op(�̂�)
𝐻

op(�̂�),                    (7) 

                   op(�̃�)
𝐻

�̃�op(�̃�) − op(�̃�)
𝐻

�̃�op(�̃�) = −op(�̂�)
𝐻

op(�̂�),                    (8) 

where �̃� ≔ 𝑄𝐻𝑋𝑄 and �̂� ≔ 𝐵𝑍. Similarly, if op(·) = ·𝐻, then premultiplying (1) 

and (2) by 𝑄𝐻 and postmultiplying them by 𝑄, the equations (7) and (8) are 

obtained, with �̃� ≔ 𝑍𝐻𝑋𝑍 and �̂� ≔ 𝐵𝐻𝑄. The matrix �̂� is not used directly, but 

after a transformation into a standardized form. Specifically, �̂� is triangularized 

using QR or RQ factorizations if op(·) = ·  or op(·) = ·𝐻, respectively, 

[
𝑄𝐵 0
0 𝐼𝑛−𝑚

] �̃� =  [�̂�
0

] , if 𝑚 < 𝑛;     𝑄𝐵 [�̃�
0

] = �̂�, if 𝑚 ≥ 𝑛; 

    [�̃� 0] [
𝑄𝐵 0
0 𝐼𝑛−𝑚

] = [�̂� 0],    if 𝑚 < 𝑛;    [�̃� 0]𝑄𝐵 = �̂�,    if 𝑚 ≥ 𝑛,        (9) 

where 𝑄𝐵 is a unitary matrix given as a product of Householder transformations, 

but the product should not be computed. These computations make the diagonal 

elements of �̃� real numbers. Further scaling by −1 of the rows (if op(·) = ·) or 

columns (if op(·) = ·𝐻) of �̃� having negative elements in their diagonal positions, 

delivers the standardized form of �̃�. The final reduced equations are then the 

following 

                   op(�̃�)
𝐻

�̃�op(�̃�) + op(�̃�)
𝐻

�̃�op(�̃�) = −op(�̃�)
𝐻

op(�̃�),                  (10) 

                   op(�̃�)
𝐻

�̃�op(�̃�) − op(�̃�)
𝐻

�̃�op(�̃�) = −op(�̃�)
𝐻

op(�̃�).                  (11) 

 

Solution of the reduced equation. The solution of the reduced equations (10) and 

(11) is discussed in the next two sections. The result is obtained in a factorized 

form, �̃� = op(𝑈)
𝐻

op(�̃�), where 𝑈 is upper triangular with real non-negative 

diagonal elements. 

Solution of the original equation. Having the „Cholesky” factor, 𝑈, the 

corresponding factor, 𝑈, of the solution 𝑋 of the original equation with op(·) = · or 

op(·) = ·𝐻 is obtained using the QR or RQ factorization, respectively, as follows, 

              𝑄𝑈𝑈 = 𝑈𝑄𝐻,     if op(·) = ·,     𝑈𝑄𝑈 = 𝑍𝑈,     if  op(·) = ·𝐻 ,             (12) 

where 𝑄𝑈 is unitary and 𝑈 is upper triangular with real non-negative diagonal 

elements. (The QR and RQ algorithms and their usual implementations return real 

diagonal elements. If 𝑢𝑖𝑖 < 0, the 𝑖-th row or column, respectively, is scaled by −1 

to ensure non-negativity.) 
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3. Solving reduced stable generalized continuous-time complex Lyapunov 

equations 

 

The solution of the reduced equations (10) is presented in this section. For 

convenience, the tilde signs are omitted. Note that all involved matrices, 𝐴, 𝐸, 𝐵, 

and the solution factor, 𝑈, are upper triangular and 𝐸, 𝐵, and 𝑈 have real non-

negative diagonal elements. 

The case 𝐨𝐩(𝑴) = 𝑴. Consider first the case op(·) = · and the following matrix 
partition 

  𝐴 = [
𝑎11 𝑎12

0 𝐴22
],     𝐸 = [

𝑒11 𝑒12

0 𝐸22
],    𝐵 = [

𝑏11 𝑏12

0 𝐵22
],    𝑈 = [

𝑢11 𝑢12

0 𝑈22
],   (13) 

where 𝑎11 ∈ 𝑪, 𝑒11, 𝑏11, 𝑢11 ∈ 𝑹, 𝑎12, 𝑒12, 𝑏12, 𝑢12 ∈ 𝑪1×(𝑛−1), and 𝐴22 , 𝐸22 , 

𝐵22 ,  𝑈22 ∈ 𝑪(𝑛−1)×(𝑛−1). Equation (1) becomes  

                                 [
�̅�11 0

𝑎12
𝐻 𝐴22

𝐻 ] [
𝑢11 0

𝑢12
𝐻 𝑈22

𝐻 ] [
𝑢11 𝑢12

0 𝑈22
] [

𝑒11 𝑒12

0 𝐸22
]                  (14) 

   + [
𝑒11 0

𝑒12
𝐻 𝐸22

𝐻 ] [
𝑢11 0

𝑢12
𝐻 𝑈22

𝐻 ] [
𝑢11 𝑢12

0 𝑈22
] [

𝑎11 𝑎12

0 𝐴22
] = − [

𝑏11 0

𝑏12
𝐻 𝐵22

𝐻 ] [
𝑏11 𝑏12

0 𝐵22
]  

 

(�̅� denotes the conjugate of 𝑥) and its solution can then be found recursively. 
Specifically, evaluating the (1,1), (2,1), and (2,2) elements of the left and right 

hand side expressions, (14) can be decomposed as 

                                           (�̅�11 + 𝑎11)𝑒11𝑢11
2 = −𝑏11

2  ,                                      (15) 

             𝑢11(𝑒11𝐴22
𝐻 + 𝑎11𝐸22

𝐻 )𝑢12
𝐻 = −𝑏11𝑏12

𝐻 − 𝑢11
2 (𝑒11𝑎12

𝐻 + 𝑎11𝑒12
𝐻 ) ,          (16) 

𝐴22
𝐻 𝑈22

𝐻 𝑈22𝐸22 + 𝐸22
𝐻 𝑈22

𝐻 𝑈22𝐴22 + (𝑢11𝑎12
𝐻 + 𝐴22

𝐻 𝑢12
𝐻 )(𝑢11𝑒12 + 𝑢12𝐸22) + 

                (𝑢11𝑒12
𝐻 + 𝐸22

𝐻 𝑢12
𝐻 )(𝑢11𝑎12 + 𝑢12𝐴22) = −𝑏12𝑏12

𝐻 − 𝐵22
𝐻 𝐵22 .           (17) 

These equations can be solved successively for 𝑢11 , 𝑢12
𝐻  , and 𝑈22 , as shown 

below. Indeed, the equations above can be rewritten as  

                                          2ℛ(𝑎11)𝑒11𝑢11
2 = −𝑏11

2  ,                                            (18) 

                                     (𝐴22
𝐻 + 𝑚1𝐸22

𝐻 )𝑢12
𝐻 =  −𝑚2𝑏12

𝐻 − 𝑢11(𝑎12
𝐻 + 𝑚1𝑒12

𝐻 ) ,   (19) 

               𝐴22
𝐻 𝑈22

𝐻 𝑈22𝐸22 + 𝐸22
𝐻 𝑈22

𝐻 𝑈22𝐴22 = −𝐵22
𝐻 𝐵22 − 𝑦𝑦𝐻  ,                         (20) 

where ℛ(𝛼) denotes the real part of a complex number 𝛼, and 

                                                𝑚1 ≔
𝑎11

𝑒11 
,   𝑚2 =≔

𝑏11

𝑒11𝑢11
 ,                                  (21) 

                                            𝑦 ≔ 𝑏12
𝐻 − 𝑚2(𝑢11𝑒12

𝐻 + 𝐸22
𝐻 𝑢12

𝐻 ) .                           (22) 

 

From (18), it follows that 



 

 

 

 

 

Sima V. / Numerical solution of stable generalized complex Lyapunov equations 

 

 

 

 

 

 

76   

                                                      𝑢11 =
𝑏11

√−2ℛ(𝑎11)𝑒11
 .                                        (23) 

Note that 𝑢11 ∈ 𝑹, since 𝑏11 ≥ 0 , 𝑒11 > 0 , and, by the stability assumption, 𝑎11 ∈
𝑪−. Moreover, 𝑢11 > 0 , if 𝑏11 > 0 , and 𝑢11 = 0 , if 𝑏11 = 0. Equation (19) 

follows by dividing (16) by 𝑢11𝑒11 , if 𝑢11 ≠ 0, and using (21). By a continuity 

argument, (19) holds also for 𝑢11 = 0;  moreover, note that 𝑚2 can be rewritten as 

𝑚2 =
√−2ℛ(𝑎11)𝑒11

𝑒11
  , which is defined also for 𝑢11 = 0 . Hence, 

                                               𝑚2
2 = −

2ℛ(𝑎11)

𝑒11
= −(𝑚1 + �̅�1) .                               (24) 

The solution 𝑢12
𝐻  is then obtained by solving a linear triangular system of equations 

(initially, of order  𝑛 − 1) using forward substitution, see, e.g., [11]. Scaling is used 

to avoid overflows. Specifically, a system 𝑀𝑥 = 𝑠𝑏 is solved instead of 𝑀𝑥 = 𝑏, 

where 𝑠 ∈ [ 0, 1] is chosen so that the elements of the computed 𝑥 are representable 

in a computer. Such a solver is available in the LAPACK package [10];  it checks 

for possible overflow or divide-by-zero at every operation, and scales 𝑥 and 𝑠, if 

necessary. Usually, 𝑠 = 1. If 𝑀 is singular, then 𝑠 = 0, and a non-trivial solution of 

𝑀𝑥 = 0 is obtained. If the unscaled problem will not cause overflows, a Level 2 

BLAS algorithm (trsv) is used. Clearly, the current value of 𝑠 should be used by 

the Lyapunov solver to update the current results, and the final 𝑠 value should be 

returned. 

Equation (20) is obtained from (17), noting that, with (22),  

𝑦𝑦𝐻 = [ 𝑏12
𝐻 − 𝑚2(𝑢11𝑒12

𝐻 + 𝐸22
𝐻 𝑢12

𝐻 ) ] [ 𝑏12 − 𝑚2(𝑢11𝑒12 + 𝑢12𝐸22)] 

                  = 𝑏12
𝐻 𝑏12 − 𝑚2𝑏12

𝐻 (𝑢11𝑒12 + 𝑢12𝐸22) − 𝑚2(𝑢11𝑒12
𝐻 + 𝐸22

𝐻 𝑢12
𝐻 )𝑏12 

                                  + 𝑚2
2(𝑢11𝑒12

𝐻 + 𝐸22
𝐻 𝑢12

𝐻 )(𝑢11𝑒12 + 𝑢12𝐸22) .                    (25) 

 

But from (19), it follows that 

                           𝑢11𝑎12
𝐻 + 𝐴22

𝐻 𝑢12
𝐻 = −𝑚2𝑏12

𝐻 − 𝑚1(𝑢11𝑒12
𝐻 + 𝐸22

𝐻 𝑢12
𝐻 ) ,             (26) 

so that, 

(𝑢11𝑎12
𝐻 + 𝐴22

𝐻 𝑢12
𝐻 )(𝑢11𝑒12 + 𝑢12𝐸22) = −𝑚2𝑏12

𝐻 (𝑢11𝑒12 + 𝑢12𝐸22) 

                          − 𝑚1(𝑢11𝑒12
𝐻 + 𝐸22

𝐻 𝑢12
𝐻 )(𝑢11𝑒12 + 𝑢12𝐸22) .                            (27) 

Adding the conjugate transpose of (27), and using (17), (24), and (25), it follows 

that (20) holds. If �̃�22 is the square triangular factor of the QR factorization 

                                                         �̃� [�̃�22

0
] = [

𝐵22

𝑦𝐻 ] ,                                         (28) 

then the right hand side from (20) becomes −�̃�22
𝐻 �̃�22 . Consequently, the 

corresponding equation has the same structure as the original equation (14), but its 

order is initially 𝑛 − 1. Therefore, the same solution technique can be used 
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recursively. The factorization in (28) is computed using 𝑛 − 1 Givens rotations 
[11]. 

The case op(𝑴)= 𝑴𝑯. Solving the equation (1) with op(𝑀) =  𝑀𝐻 is similar. 

However, the partition used for matrices is different, namely, 

 𝐴 = [
𝐴22 𝑎12

0 𝑎11
],     𝐸 = [

𝐸22 𝑒12

0 𝑒11
],    𝐵 = [

𝐵22 𝑏12

0 𝑏11
],    𝑈 = [

𝑈22 𝑢12

0 𝑢11
],    (29) 

where 𝑎11 ∈ 𝑪, 𝑒11, 𝑏11, 𝑢11 ∈ 𝑹, 𝑎12, 𝑒12, 𝑏12, 𝑢12 ∈ 𝑪(𝑛−1)×1, and 𝐴22 , 𝐸22 , 

𝐵22 ,  𝑈22 ∈ 𝑪(𝑛−1)×(𝑛−1). With (29), the formulas for solving (1) can be obtained 

by taking the conjugate transpose of the relations above. The equation for 𝑢11 is 

the same, and the other two equations are 

                    (𝐴22 + �̅�1𝐸22)𝑢12 = −𝑚2𝑏12 − 𝑢11(𝑎12 + �̅�1𝑒12) ,                    (30) 

                    𝐴22𝑈22𝑈22
𝐻 𝐸22

𝐻 + 𝐸22𝑈22𝑈22
𝐻 𝐴22

𝐻 = −𝐵22𝐵22
𝐻 − 𝑦𝑦𝐻  ,                    (31) 

with 𝑦 ≔ 𝑏12 − 𝑚2(𝑢11𝑒12 + 𝐸22𝑢12). Since the right hand side in (31) is 

−𝐵22𝐵22
𝐻 − 𝑦𝑦𝐻, an RQ factorization of the matrix 

                                          [�̃�22 0]�̃� = [𝐵22 𝑦] ,                                             (32) 

is used, so that the right hand side becomes −�̃�22�̃�22
𝐻  . 

 

4. Solving reduced stable generalized discrete-time complex Lyapunov 

equations 

 

The case 𝐨𝐩(𝑴) = 𝑴. In a similar manner to the continuous-time case, the basic 

equations for the discrete-time case with op(·) = · are 

                                [
�̅�11 0

𝑎12
𝐻 𝐴22

𝐻 ] [
𝑢11 0

𝑢12
𝐻 𝑈22

𝐻 ] [
𝑢11 𝑢12

0 𝑈22
] [

𝑎11 𝑎12

0 𝐴22
]                  (33) 

  − [
𝑒11 0

𝑒12
𝐻 𝐸22

𝐻 ] [
𝑢11 0

𝑢12
𝐻 𝑈22

𝐻 ] [
𝑢11 𝑢12

0 𝑈22
] [

𝑒11 𝑒12

0 𝐸22
] = − [

𝑏11 0

𝑏12
𝐻 𝐵22

𝐻 ] [
𝑏11 𝑏12

0 𝐵22
] . 

 

It follows that 𝑢11 , 𝑢12
𝐻  , and 𝑈22 can be obtained by solving the following 

equations 

                                            (|𝑎11|2 − 𝑒11
2 )𝑢11

2 = −𝑏11
2  ,                                      (34) 

                                     (𝑚1𝐴22
𝐻 − 𝐸22

𝐻 )𝑢12
𝐻 =  −𝑚2𝑏12

𝐻 + 𝑢11(𝑒12
𝐻 − 𝑚1𝑎12

𝐻 ) ,   (35) 

𝐴22
𝐻 𝑈22

𝐻 𝑈22𝐴22 − 𝐸22
𝐻 𝑈22

𝐻 𝑈22𝐸22 + (𝑢11𝑎12
𝐻 + 𝐴22

𝐻 𝑢12
𝐻 )(𝑢11𝑎12 + 𝑢12𝐴22) 

             − (𝑢11𝑒12
𝐻 + 𝐸22

𝐻 𝑢12
𝐻 )(𝑢11𝑒12 + 𝑢12𝐸22) = −𝑏12

𝐻 𝑏12 − 𝐵22
𝐻 𝐵22 ,           (36) 

where 𝑚1 and 𝑚2 are defined in (21). The solution of (34) is 
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                                                    𝑢11 =
𝑏11

√𝑒11
2 −|𝑎11|2

 ,                                                  (37) 

which is a real non-negative number, since the stability assumption implies 
|𝑎11|/𝑒11 < 1. In this case, 𝑚1 and 𝑚2 satisfy the following relation 

                                     |𝑚1|2 + 𝑚2
2 =

|𝑎11|2

𝑒11
2 +

𝑒11
2 −|𝑎11|2

𝑒11
2 = 1 .                                 (38) 

Define also a 2 × 2 matrix 

𝑀 ≔ 𝐼2 − [
𝑚2

𝑚1
] [

𝑚2

𝑚1
]

𝐻

= [
1 − 𝑚2

2 −�̅�1𝑚2

−𝑚1𝑚2 1 − |𝑚1|2
] = [

|𝑚1|2 −�̅�1𝑚2

−𝑚1𝑚2 𝑚2
2 ] =: 𝐶𝐶𝐻, 

(39) 

where 𝐶𝐶𝐻  is a factorization of 𝑀. Note that 𝑀 = 𝑀𝐻  , hence 𝑀 is a Hermitian 

matrix and, therefore, its eigenvalues, 𝜆𝑗 , 𝑗 = 1, 2, are real. But using (38) and 

(39),  

          𝜆1 + 𝜆2 = |𝑚1|2 + 𝑚2
2 = 1,       𝜆1𝜆2 = |𝑚1|2𝑚2

2 − |𝑚1|2𝑚2
2 = 0 .          (40) 

Consequently, 𝛬(𝑀) = { 1, 0 }, and considering the spectral decomposition of  𝑀, 

𝑀 = 𝑉𝛬(𝑀)𝑉𝐻, it follows that 𝑀 = 𝑉1𝑉1
𝐻, where 𝑉1 is the first column of 𝑉. 

Hence, the factor 𝐶 of the rank-1 matrix 𝑀 in (39) can be taken as the eigenvector 

of 𝑀 corresponding to the unit eigenvalue. Defining now 

                                      𝑦 ≔ [ 𝑏12
𝐻 𝑢11𝑎12

𝐻 + 𝐴22
𝐻 𝑢12

𝐻  ]𝐶 ,                                  (41) 

it is easy to show that (36) is equivalent to 

                      𝐴22
𝐻 𝑈22

𝐻 𝑈22𝐴22 − 𝐸22
𝐻 𝑈22

𝐻 𝑈22𝐸22 = −𝐵22
𝐻 𝐵22 − 𝑦𝑦𝐻  .                  (42) 

Indeed, defining, for convenience, 

          𝑎 ≔ 𝑢11𝑎12
𝐻 + 𝐴22

𝐻 𝑢12
𝐻  ,     𝑒 ≔ 𝑢11𝑒12

𝐻 + 𝐸22
𝐻 𝑢12

𝐻 = 𝑚2𝑏12
𝐻 + 𝑚1𝑎 ,        (43) 

where the last equality derives from (35), it follows that 

𝑦𝑦𝐻 = [𝑏12
𝐻 𝑎]𝑀 [

𝑏12

𝑎𝐻
] = [𝑏12

𝐻 𝑎] [
|𝑚1|2 −�̅�1𝑚2

−𝑚1𝑚2 𝑚2
2 ] [

𝑏12

𝑎𝐻
] 

                        = |𝑚1|2𝑏12
𝐻 𝑏12 − �̅�1𝑚2𝑏12

𝐻 𝑎𝐻 − 𝑚1𝑚2𝑎𝑏12 + 𝑚2
2𝑎𝑎𝐻  .           (44) 

But with (43), (36) becomes 

                  𝐴22
𝐻 𝑈22

𝐻 𝑈22𝐴22 − 𝐸22
𝐻 𝑈22

𝐻 𝑈22𝐸22 = −𝐵22
𝐻 𝐵22 − 𝑏12

𝐻 𝑏12 − 𝑎𝑎𝐻 + 𝑒𝑒𝐻           

(45) 

= −𝐵22
𝐻 𝐵22 − 𝑏12

𝐻 𝑏12 − 𝑎𝑎𝐻 + (𝑚2𝑏12
𝐻 + 𝑚1𝑎)(𝑚2𝑏12 + �̅�1𝑎𝐻) 

= −𝐵22
𝐻 𝐵22 − 𝑏12

𝐻 𝑏12 − 𝑎𝑎𝐻 + 𝑚2
2𝑏12

𝐻 𝑏12 + �̅�1𝑚2𝑏12
𝐻 𝑎𝐻 + 𝑚1𝑚2𝑎𝑏12

+ |𝑚1|2𝑎𝑎𝐻 
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= −𝐵22
𝐻 𝐵22 − |𝑚1|2𝑏12

𝐻 𝑏12 + �̅�1𝑚2𝑏12
𝐻 𝑎𝐻 + 𝑚1𝑚2𝑎𝑏12 − 𝑚2

2𝑎𝑎𝐻 =
−𝐵22

𝐻 𝐵22 − 𝑦𝑦𝐻. 

Replacing the triangular factor �̃�22 of the QR factorization (28) in the last equality 

in (45), a reduced Lyapunov equation of order 𝑛 − 1 in 𝑈22 is obtained, and the 

procedure continues recursively in the same way.  

The case op(𝑴)= 𝑴𝑯. Solving the equation (2) with op(𝑀) =  𝑀𝐻 is similar to 

the case op(·) = ·. The formulas can be obtained by taking the conjugate transpose 

of the relations above. The equation for 𝑢11 is the same, and the other two 

equations are 

                    (�̅�1𝐴22 − 𝐸22)𝑢12 = −𝑚2𝑏12 + 𝑢11(𝑒12 − �̅�1𝑎12) ,                    (46) 

                    𝐴22𝑈22𝑈22
𝐻 𝐴22

𝐻 − 𝐸22𝑈22𝑈22
𝐻 𝐸22

𝐻 = −𝐵22𝐵22
𝐻 − 𝑦𝑦𝐻  ,                    (47) 

with 𝑦 ≔ [ 𝑏12  𝑢11𝑎12 + 𝐴22𝑢12 ]𝐶 . An RQ factorization of the matrix [ 𝐵22   𝑦 ] 
is used, as in (32). 

 

5. Numerical issues 

 

If the Lyapunov equation is unreduced, the QZ algorithm is first used, and the 

equation is transformed to the reduced form (10) or (11). Otherwise, the reduction 

step is optionally skipped, but the solver can accept the matrices 𝑄 and 𝑍 on input 

and apply them to 𝐵 and to back transform the solution of the reduced equation, �̃�. 

Other options specify the op(·) operator or the type of equation as continuous- or 

discrete-time. Using these options is useful, for instance, to compute the 

controllability and observability Gramians of a linear dynamical system (3). 

Indeed, the first call of the solver could reduce the matrix pencil 𝐴 − 𝜆𝐸 to GSF 

and return the matrices �̃�, �̃�, 𝑄, 𝑍, as well as the solution of one of the equations in 

(4) (or (5));  the second call can use �̃�, �̃�, 𝑄, and 𝑍, and compute the solution of the 

second equation. In this way the most time consuming step in the solution process, 
the reduction to GSF, is skipped for the second equation. A quick test is made to 

detect identity matrices 𝑄 and/or 𝑍 and avoid their use in multiplications. The 

stability condition is easily checked out using the diagonal elements of the GSF, 
and an error indicator is returned if that condition fails. 

For maximum efficiency, the computation of �̂� in (7) and (8) is performed using 

BLAS 3 gemm operations, using as large blocks of columns or rows as possible, 
depending on the available workspace size. An optimal workspace size can be 

returned using a special call of the solver with the size set to −1. Then, another call 

with the obtained size will compute the solution. But the solver can be used with a 

minimum workspace size of max(1, 3𝑛 − 3, 2𝑛), for 𝑛 ≥ 0. The computation of 

the right hand sides in (12) involves a product of an upper triangular matrix and 

another (unitary) matrix. While BLAS Library [12] includes a subroutine for such 

products (trmm), the result is overwritten on the general matrix. For solving 

Lyapunov equations this is unsuitable, since 𝑄 and 𝑍 in (12) should be returned by 

the solver. For this reason, a new routine has been developed which overwrites 𝑈, 



 

 

 

 

 

Sima V. / Numerical solution of stable generalized complex Lyapunov equations 

 

 

 

 

 

 

80   

possibly without additional workspace. Block-row or block-column operations are 
performed with block sizes as large as the available workspace allows. 

The computation of 𝑢12
𝐻  in (19) or (35) requires the solution of a triangular linear 

system of equations with coefficient matrix 𝐴22
𝐻 + 𝑚1𝐸22

𝐻  , or  𝑚1𝐴22
𝐻 − 𝐸22

𝐻  . 
These matrices must be evaluated, but submatrices of 𝐴22 and 𝐸22 are needed in 

the subsequent computations. It is possible to overwrite, e.g., 𝐴22
𝐻  by 𝐴22

𝐻 + 𝑚1𝐸22
𝐻  

(or 𝑚1𝐴22
𝐻 − 𝐸22

𝐻 ), and restore 𝐴22 after finding the solution 𝑢12
𝐻 , by reversing the 

operations (such as 𝐴22
𝐻 ∶= 𝐴22

𝐻 − 𝑚1𝐸22
𝐻 ). But the chosen technique is more 

efficient, and takes into account that the upper triangular matrices 𝐴 and 𝐸 are 

either given or returned by the QZ algorithm. Specifically, the strictly lower 

triangular part of 𝐸 is overwritten by the conjugate transpose of the strictly upper 

part, before starting the recursion for solving a reduced equation. Moreover, the 

diagonal elements of 𝐴  are saved in the workspace. Then, at each iteration of the 

recursion, the lower triangular part of the current 𝐴22 is similarly overwritten by 

the conjugate transpose of its upper triangular part, and then it is updated to 

account for the contribution of 𝐸22
𝐻   and  𝑚1. This updated lower triangular part is 

used for finding the current 𝑢12
𝐻  . Then, the diagonal elements of the current 𝐴22 are 

restored. Note that this technique preserves the upper triangles of 𝐴22 and 𝐸22 and 

needs no additional computations. Moreover, taking conjugate transposes is 

anyway needed. 

To obtain the factor 𝐶 of the matrix 𝑀 in (39), a LAPACK routine, ZSTEIN, is 

called. This routine can use selected eigenvalues of a tridiagonal symmetric matrix 

to compute the associated eigenvectors by inverse iteration. For the case of 
discrete-time generalized Lyapunov equation, the eigenvector corresponding to the 

unit eigenvalue is needed, but the matrix 𝑀 is Hermitian. It can be transformed to a 

similar real tridiagonal symmetric matrix. Indeed, the diagonal elements are 

preserved, and the off-diagonal elements are set to the modulus of 𝑚21 (or 𝑚12). In 
this way, both the sum and product of the eigenvalues for the two matrices are the 

same. 

 
6. Numerical results 

 

An extensive testing has been performed to evaluate the new solver. Some real case 

examples from [2], [3] have been used to verify the correctness of the delivered 
results. Tests with randomly generated matrices (from a uniform distribution) have 

also been performed, and the normalized residuals have been analyzed. For a 

performance investigation, examples from the COMPleib collection [13] have been 
used. The collection contains 124 standard continuous-time systems, but with 

variations, a total of 168 systems can be defined. Note that some COMPleib 

examples were derived from systems with general, but nonsingular matrix 𝐸, by 

multiplying the matrices in the state equation in (3) by 𝐸−1 from the left. These 

examples have been modified for this paper in order to be obtain stable generalized 

complex systems and Lyapunov equations. 
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The computations have been performed in double precision on an Intel Core i7-
3820QM portable computer (2.7 GHz, 16 GB RAM), under Windows 7 

Professional (Service Pack 1) operating system (64 bit), with Intel Visual Fortran 

Composer XE 2015, and MATLAB 8.6.0.267246 (R2015b). An executable MEX-
file has been built using the new solver, SLICOT routines and MATLAB-provided 

optimized LAPACK and BLAS routines. 

A collection of 33 generalized systems has been derived from the COMPleib 

examples for which the matrix 𝐸 was available, usually in binary mat files (for 31 

examples). For all these examples, 𝐸 is nonsingular and its inverse has been used to 

generate the systems in the COMPleib collection. Among these, 8 examples 

(HF2Di, with i = 1, 2, ..., 8) have orders greater than or equal to 2025. Only one 

example, TL, which describes a transmission line, has a condition number for 𝐸 

larger than 4, namely, 7.7579·106. The Hankel singular values for the original TL 

example, computed using the singular values of the matrix 𝑅𝑜𝑅𝑐 , as described in 

Section 1, are represented in the bar graph of Fig.1, using a logarithmic scale for 

the ordinate. Only the significant singular values of 𝑅𝑜𝑅𝑐 are retained, that is, the 

largest rank(𝑅𝑜𝑅𝑐) ones are displayed. 

 

 
Fig. 1. Significant Hankel singular values of the example TL from the COMPleib collection. 

 

A modified TL system with complex matrices has been then obtained using the 
procedure described below. The significant Hankel singular values for this system 

are shown in Fig. 2. 
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Fig. 2. Significant Hankel singular values of the modified example TL from the COMPleib collection. 

 

The other COMPleib examples with given matrix 𝐸 belong to the group of two-

dimensional (2D) heat flow models, which arise in the design of static output 

feedback control laws. The models have been obtained using a discretization 
algorithm which often produced large scale finite dimensional approximations of 

the original infinite dimensional problems (examples HF2D1  ̶ HF2D8, and their 

variations). Other examples (HF2D10 ̶ HF2D17) are actually their corresponding 

highly reduced order approximations computed using the proper orthogonal 
decomposition approach. 

Procedure to generate stable complex systems. Five of the investigated 

examples, TL, HF2D3, HF2D4, HF2D12, and HF2D13, are stable. Therefore, these 
examples have been modified to obtain complex counterparts. The other examples 

should also be made stable. The procedure to generate such examples is described 

for the COMPleib example HF2D1_M316. This example has 𝑛 = 316, 𝑚 = 2, and 

𝑝 = 3. The state matrix is pentadiagonal, specifically tridiagonal plus two other 
off-diagonals starting at row and column 20, and reducing the distance to the 

diagonal to 14 at the row/column 198. The matrix 𝐸 is diagonal with positive 

elements. There is an unstable eigenvalue, 𝜆29 =0.48523 (retaining five significant 
digits). To obtain a stable system, it is possible to use the real generalized Schur 

form of the matrix pencil 𝐴 − 𝜆𝐸,  

                                              �̃� = 𝑄𝑇𝐴𝑍,    �̃� = 𝑄𝑇𝐸𝑍                                         (48) 

with �̃� upper triangular with positive diagonal elements. The positive eigenvalue of 

�̃� − 𝝀�̃� is again 𝜆29 , and therefore, the system can be modified, e.g., by changing 

the sign of �̃�29,29 . (In control engineering, stability can be enforced, for stabilizing 

systems, using for instance stabilization or pole assignment algorithms.) But with 

this modification the system will remain real. In order to obtain a complex system, 
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a feature of the QZ algorithm, qz, included in MATLAB, is used. Specifically, by 
default, this algorithm returns a complex GSF (6) for real matrices having complex 

conjugate eigenvalues. (The real GSF is obtained if the option 'real' is specified as 

an input argument of the qz command.) Since the matrices �̃� and �̃�, returned by qz, 

are upper triangular and �̃� has positive diagonal elements, a stable complex system 

is obtained by changing the signs of the negative diagonal elements in �̃�, e.g., of 

�̃�29,29 , for the considered example. The significant Hankel singular values of the 

modified system are shown in the bar graph of Fig. 3. Fig. 4 shows the results for 

the larger system HF2D1, of order 3796, modified similarly. 

However, 18 COMPleib examples, HF2D5_M289, HF2D5_M529, HF2D6_M289, 
HF2D6_M529, HF2D7, HF2D8, HF2D10, HF2D11, HF2D12, HF2D13, HF2D14, 

HF2D15, HF2D16, HF2D17, HF2D_IS1, HF2D_IS2_M529, HF2D_IS5, and 

HF2D_IS6 have real eigenvalues only. For these systems, the qz function returns 

real matrices �̃� and �̃�. To get a complex dynamic system, the matrix �̃� has been 

modified by replacing �̃�𝑗,𝑗  by 𝜄|𝝀𝑗| 𝜀1/2 − �̃�𝑗,𝑗 , where 𝜄 denotes the purely 

imaginary unit, 𝑗 is the index of the real eigenvalue with the minimum modulus, 

and ε is the machine accuracy, ε ≈ 2.22·10−16.  

 
Fig. 3. Significant Hankel singular values of the modified example HF2D1_M316 

from the COMPleib collection. 

 
Fig. 4 Significant Hankel singular values of the modified example HF2D1 from the COMPleib 

collection. 
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Table 1 shows the first two Hankel singular values 𝜎1,2 for all 33 COMPleib 

examples, modified as described above. The number 𝑗 is the index for which 𝜆𝑗  is 

unstable; r is the number of significant Hankel singular values, that is, rank(𝑅𝑜𝑅𝑐 ). 

A hyphen is used when there are no unstable eigenvalues; this happened for five 

examples mentioned above. There is a single originally unstable eigenvalue for the 

remaining examples. 
 

Table 1. The largest two Hankel singular values for modified COMPleib examples of generalized 
systems. 

Example 𝑛 𝑚 𝑝 𝜎1,2 𝑗 r 

TL   256 2 2 1.018e+18  6.630e+17     - 41 

HF2D1 3796 2 3 1.8941e+0   3.5536e-1 328 51 

HF2D1_M316  316 2 3 3.5506e+0   6.2466e-1   29 40 

HF2D1_M541   541 2 3 1.7852e+0 4.6071e-1   47 44 

HF2D2 3796 2 3 1.0307e+0 1.3844e-1 328 47 

HF2D2_M316  316 2 3 5.5555e-1 1.6910e-1   30 40 

HF2D2_M541   541 2 3 5.6463e-1 1.5720e-1   47 42 

HF2D3 4489 2 4 6.2163e-1 2.8049e-1    - 50 

HF2D4 2025 2 4 1.7699e+1 3.1309e+0    - 44 

HF2D5 4489 2 4 2.9820e+1 1.8711e+1    1 53 

HF2D5_M289   289 2 4 3.0656e+0 2.1297e+0    4 41 

HF2D5_M529   529 2 4 6.3719e+0 4.2424e+0    4 43 

HF2D6 2025 2 4 8.0719e+0 5.3872e+0    9 46 

HF2D6_M289   289 2 4 1.3787e+0 7.6935e-1    1 37 

HF2D6_M529   529 2 4 4.1366e+0 2.6703e+0    1 41 

HF2D7 4489 2 4 4.2784e+1 1.7350e+1    2 51 

HF2D8 2025 2 4 8.9382e+0 3.6434e+0    9 46 

HF2D10      5 2 3 1.9855e+0 3.8523e-1    3   5 

HF2D11      5 2 3 1.1360e+0 1.4687e-1    3   5 

HF2D12      5 2 4 5.9841e+0 8.2993e-1    -   5 

HF2D13      5 2 4 8.1003e+1 4.1171e+0    -   5 

HF2D14      5 2 4 2.8355e+1 1.0403e+1    2   5 

HF2D15      5 2 4 7.9188e+0 3.4392e+0    2   5 

HF2D16      5 2 4 4.3374e+1 1.5587e+1    2   5 

HF2D17      5 2 4 8.9934e+0  3.9228e+0    2   5 

HF2D_IS1 4489 2 4 3.8087e+0 1.2708e+0    4 51 

HF2D_IS1_M361   361 2 4 2.9901e+0 1.3285e+0    1 41 

HF2D_IS1_M529   529 2 4 1.0183e+0 8.3036e-1    4 43 

HF2D_IS2 4489 2 4 3.4372e-1 2.2463e-1    9 49 

HF2D_IS2_M361   361 2 4 5.3589e-1 3.4371e-1    1 39 

HF2D_IS2_M529   529 2 4 4.6915e-1 3.0184e-1    1 42 

HF2D_IS5      5 2 4 1.6869e+0 3.3007e-1    2    5 

HF2D_IS6      5 2 4 3.2556e-1 6.2128e-2    2   5 

 

Table 2 shows the CPU execution times in seconds needed to compute the results. 

Specifically, the CPU times spent by the QZ algorithm, computation of the 

eigenvalues, transformation of the right hand sides and solution of the two related 
reduced Lyapunov equations (10), and computation of the singular values 

(including evaluation of the product 𝑅𝑐𝑅𝑜 ) are shown in separate columns. No 



 

 

 

 

 

Journal of Engineering Sciences and Innovation, Vol. 7, Issue 1 / 2022 

 

 

 

 

 

 

 

85 

record is included when all these four timing values are zero. The maximum total 

time is of 57.01 minutes, for example HF2D5, with 𝑛 = 4489, 𝑚 = 2, and 𝑝 = 4. 

The most time consuming step is the reduction to complex GSF using qz 

command. The ratios between the timing values needed by qz and the solution of 
the two reduced equations vary in the range (1.29, 2.58) and the mean value of 

these ratios is 1.71. Similarly, the ratios between the timing values needed by qz 

and the computation of the singular values vary in the range (5.22, 20) and the 

mean value is 11.81. The computation of the eigenvalues needs a negligible CPU 
time. The total CPU time for each system of order at most 541 is less than 3 

seconds. Similarly, the computational problem for each system of order 2025 has 

been solved in less than 283 seconds. 
 

Table 2. CPU time in seconds for modified COMPleib examples of generalized systems. 

Example Timing (seconds) 

 QZ 𝝀 Solution SVD 

TL        0.18  0.00       0.10     0.01 

HF2D1                     916.91  0.00   708.08 165.67 

HF2D1_M316       0.34  0.00       0.16     0.02 

HF2D1_M541       1.53  0.00       0.98     0.10 

HF2D2   915.35  0.00   699.00 175.17 

HF2D2_M316       0.36  0.00       0.14     0.02 

HF2D2_M541       1.51  0.00       0.97     0.09 

HF2D3 1876.68        0.00 1191.23 294.67 

HF2D4   158.70          0.00     94.61   28.55 

HF2D5 1906.48        0.00 1226.94 287.45 

HF2D5_M289       0.26        0.00       0.12     0.02 

HF2D5_M529       1.59          0.00       1.01     0.09 

HF2D6   161.25          0.00     94.48   27.26 

HF2D6_ M289       0.25        0.00       0.15     0.02 

HF2D6_ M529       1.52        0.00       1.00     0.09 

HF2D7 1913.63        0.41 1131.39   299.06 

HF2D8   161.26          0.08     91.25   27.56 

HF2D_IS1 1695.43        0.41 1112.78 269.86 

HF2D_IS1_ M361       0.48           0.00       0.25     0.03 

HF2D_IS1_ M529       1.60           0.00       0.92     0.08 

HF2D_IS2 1832.53       0.00 1229.07 295.56 

HF2D_IS2_ M361       0.45           0.00       0.23     0.03 

HF2D_IS2_ M529       1.54    0.00       0.95     0.10 

 

7. Conclusions 

 

A numerically attractive solution for stable generalized complex Lyapunov 

equations for both continuous- and discrete-time case is presented. Two equations 

with the matrices 𝐴 and 𝐸, and 𝐴𝐻 and 𝐸𝐻, respectively, can be solved using a 
single computation of the generalized Schur form. This is useful, for instance, 

when finding the Hankel singular values of linear generalized dynamical systems. 

The basic computational formulas are derived in a systematic manner, and the 
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related numerical issues are highlighted. The numerical results for a significant set 
of large examples based on the COMPleib collection illustrate the solver 

performance. The proposed solver could be a useful addition to the state-of-the-art 

numerical software packages and environments.  
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