
Journal of Engineering Sciences and Innovation 
Volume 4, Issue 3 / 2019, pp. 301-312 

 
  Technical Sciences 
  Academy of Romania                                                 E. Electrical and Electronics Engineering 
         www.jesi.astr.ro                                                                      

Received 10 April 2019  Accepted 23 September 2019 
Received in revised from 11 July 2019 
 

TP–Based model transformation and gain-scheduling control 
of electromagnetic actuated clutch systems 

 

CLAUDIA-ADINA BOJAN-DRAGOS, ELENA-LORENA HEDREA, 
RADU-EMIL PRECUP 

 
AAI Department, Politehnica University Timisoara, Bd. V. Parvan 2, 300223 Timisoara, 

Romania 
 
Abstract. This paper suggests two combinations of Tensor Product (TP)–based model 
transformation and gain-scheduling control leading to two efficient control system 
structures that are applied to the position control of nonlinear electromagnetic actuated 
clutch systems. One of the two combinations is included in a cascade control system 
structure that consists of a TP–based controller in the inner control loop and a gain-
scheduling–based controller in the outer control loop. The proposed control system 
structures were tested on the nonlinear process model and validated by simulation results. A 
comparative analysis is given. 
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1. Introduction 
 
This paper focuses on the development of two control structures (CSs) made of a 
combination of Tensor Product (TP)–based model transformation (TPBMT) and 
gain-scheduling control (GSC), which are applied to the position control of 
electromagnetic actuated clutch systems (EACSs). Our CSs are designed in the 
context of popular CS design approaches for EACS given in [1] – [5]. 
TPBMT is a numerical approach, which starts with Linear Parameter–Varying 
(LPV) dynamic models and derivates Linear Time-Invariant (LTI) systems as 
shown [6] – [9]. Representative applications of TPBMT are given in [10]–[15], and 
a combination of TPBMT and gain-scheduling control is presented in [16]. The 
combination with sliding mode control reported in [17] proves to be efficient by 
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incorporating several theoretical and application results related to sliding mode 
control given in [18] – [21]. 
The main contribution of this paper is the design and validation of two CSs for the 
mass position control of EACS. In the first step a TP–based control structure (TP–
CS) is designed for the position control of the EACS using the Parallel Distributed 
Compensation (PDC) technique, which is suitable for state feedback control, where 
a general nonlinear design approach is suggested and validated in on an inverted 
pendulum system application [22]. In the second step, a cascade control structure 
(GS-TP-CS) is designed for EACS with the TP–MT controller (TP–MT–C) in the 
inner control loop and the anti–windup Proportional–Integral–Derivative Gain–
Scheduling controller (aw–PID–GS–C) in the outer control loop. The proposed 
CCSs are validated by simulation results. The comparison of these two types of 
CSs for EACS system, namely the TP–CS and the TP-GS-CS, is also given in this 
paper by means of a set of system responses and tracking error responses that can 
be easily compared. 
The paper treats these topics: the mathematical model of the EACS is discussed in 
Section 2. The design of the two CCSs for EACS is briefly described in Section 3. 
The simulation results that illustrate the CCS performance and the comparative 
analysis are presented in Section 4. Section 5 highlights the conclusions. 
 
2. Modelling of the controlled process 
 
The process that is considered in this paper, modeled and next controlled, is an 
electromagnetic actuator clutch systems as part of a clutch system, illustrated in 
Fig. 1. 
 

 
Fig. 1. Schematic structure of the magnetically actuated mass-spring-damper system. 
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In order to design the proposed CSs, the following nonlinear state-space model of 
the EACS is used in [23] – [25]: 
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where u[0, 12] [V] is the control signal, x1[0, 0.004] [m] is the mass position, 
x2 [m/s] is mechanical subsystem’s speed and 3x  [V  s] is the magnetic flux; y 

[m] is the measured mass position, m=1 [kg] is the mass, d=0.004 [m] is the 
distance between contact position and spring neutral position, R=1.2 [Ω] is the 
resistance, c=700 [N s/m] coefficient of the damper, k=37500 [N/m] is stiffness of 
the spring, ka=0.5 is a constant kb=0.375 is a constant, i[0, 10] [A] is the current, 
and F[0, 150] [N] is the external force. 
 
3. Control structures design 
 
In the following paragraphs the design of two CSs for the mass position control of 
EACS is detailed. The first CS is a TP–based control structure (TP–CS) designed 
for the position control of the EACS using the Parallel Distributed Compensation 
(PDC) technique. The second CS combines two CSs into a cascade control 
structure (TP-GS-CS): the TP–MT controller (TP–MT–C) in the inner control loop 
and the anti–windup Proportional–Integral–Derivative Gain–Scheduling controller 
(aw–PID–GS–C) in the outer control loop. 
 
3.1. TP–based control structure design 
 
Starting with the quasi–LPV (qLPV) model of EACS a TP–based control structure, 
namely TP–CS (Fig. 2), is designed, where u is the control signal, uTP is the output 
of TP–based controller and r is the reference input. 
 

 
Fig. 2. Block diagram of TP–CS designed for EACS. 
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The qLPV model of EACS is 
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where   13
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xTxxx x  is the process state vector, 11
11

xxp p  is the 

parameter vector (which contains the first state variable), y  is the controlled output 

variable and the matrices )(),(),( pcpbpA T  are: 
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where T indicates matrix transposition and the elements of the matrices are: 
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Using the notation: ,])()([)( 43 pbpApS  the qLPV model is obtained as 
follows: 
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which aggregates a set of LTI models in terms of this process model: 
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where )( nn pw  are the weighting functions, N  is tensor’s dimension, S is the 

)2( N -dimensional coefficient tensor of the model given in (3) and I=3 is the 
number of singular values of the tensor S obtained after applying HOSVD to S. 
The LTI system matrices are ][ iii bAS  , where the matrices 

iA  and 
ib  belong 

to the state-space system model 
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as a particular model of the general ones given in [22], and the matrix )(pcT  is 

constant in this application, i.e. TT cpc )( . 
The asymptotic stabilization of the CS is the first control objective. It is achieved 
by the PDC technique, which determines one LTI state feedback gain matrix for 
each LTI vertex system of the convex TP model. The asymptotic stability of the 
closed–loop control system is equivalent to the existence of 01  PX  (where P 
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is a positive definite matrix) and 
iM  that satisfy the following Linear Matrix 

Inequalities (LMIs) [8]: 
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in the Lyapunov-type formulation. However, Popov-type problem setting and 
expression of inequality-type stability conditions [26] can also be formulated and 
derived. The LTI state feedback gain matrices 

iF  are then computed as: 

 .1 XMF ii
 (9) 

Finally, the application of PDC technique to EACS results in the following state 
feedback control law: 
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where 
TPu  is produced by the TP–based controller. 

The second control objective is to constrain the control value. Let us assume that 
2||)0(|| x , where the initial state vector )0(x  is unknown, but the upper bound   

is known. The constraint || u  is enforced at all time moments if the following 

LMIs are satisfied [8]: 
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which guarantee that the second objective is achieved. 
In this paper 032.5   and 100 . The matrices X  and 

iM  are computed using 

the YalmipR2015 solver. The solutions are next substituted in (9) leading to the 
following values of LTI state feedback gain matrices: 
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3.2. The cascade control structure design 
 
Due to the process nonlinearities, an aw–PID–GS–CS, Fig. 3, is employed in order 
to ensure the improvement of the CS performance such as the zero steady–state 
control error (or the tracking error), the alleviation of overshoot, and the bumpless 
switching between controllers [27]. 
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Fig. 3. Block diagram of CCS. 

 
The design of this CS starts with a simple least-squares-based experimental 
approximation of the inner control loop (TP–CS) resulting in four third-order 
benchmark-type closed-loop transfer functions (t.f.s): 
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where 34.0)1( Pk , 42.0)2( Pk , 61.0)3( Pk , 96.0)4( Pk  are the inner control loop gains, 

065.0)1(
1 T , 078.0)2(
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Using pole-zero cancellation four aw–PID–Cs were developed for the TP–CS with 
the t.f.s extended with a first–order lag filter: 
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with the tuning parameters )( j

ck , )(
1

j
cT , )(

2
j

cT  and )( j
fdT  obtained by the Modulus 

Optimum method, which is similar to the Symmetrical Optimum one and its 
extended version [28]: 
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The output produced by the aw–PID–GS controller, uGS, is expressed as: 
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with the tuning parameters, kp, ki and kd obtained as follows [29]: 
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where the parameters 

maxpk , 
minpk , 

maxdk , 
mindk , 

maxik  and 
minik  are computed using 

the tuning parameters of the aw–PID–Cs: 
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and the parameter 1)(0  t  is chosen to ensure a smooth and continuous 

variation of the switching between aw–PID–Cs [29]: 
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The parameter  determines the rate at which )(t  changes between 0 and 1, and it 
is set to ensure a certain dynamics of the variation of )(t . The parameter )(t  is 
set in terms of [30]: 
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To design of aw–PID–GS–CS, the following conditions can be taken into account 
[29]: when |)(| te  is large, kpmax and kimin are activated to produce a large control 
signal and to reduce the undesirable oscillation and overshoot; the parameters, kpmax 
and kimin are activated to obtain a small value of |)(| te  and to reduce the high 
overshoot. 
Finally, the control law u of the CCS is computed by combining output variable of 
TP–based controller, uTP in (10), with the output variable of the aw–PID–GS 
controller, uGS: 
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4. Simulation results 
 
This section is dedicated to test the CSs discussed and designed in the previous 
sections, namely the TP–CS and the GS-TP-CS. 
The following testing scenario was considered and performed: a staircase reference 
input acting for 10 s was applied to the nonlinear EACS and the corresponding 
outputs versus time for both the designed CSs are illustrated in Fig. 4. Zero initial 
conditions were used in the digital simulations that led to the simulation results 
presented in this paper. 
The aw–PID–GS–C parameters 4.71max pk , 36min pk , 53.0max dk , 32.0min dk , 

886max ik  and 314min ik  are determined using (21) and several experiments have 

been conducted such that to get the best values in the context of a compromise to 
tradeoff and overshoot. 
In order to highlight the dynamic and steady-state performance of the two CSs 
designed in the previous sections, two performance indices were recorded and 
computed, namely the tracking error and the mean square error. 
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The tracking errors were computed as the difference between the reference input 
and the measured output of the TP–CS, yTP, and as the difference between the 
reference input and the measured output of the GS–TP–CS, yGS-TP. 
 

 
Fig. 4. Mass position vs time in the proposed CS with staircase reference signal. 

 
The mean square error (MSE) was then computed for all the two CS as: 
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where the subscript C{TP–CS, GS–TP–CS} indicates the designed CS, )( dtr  is 

the reference at time moment Ntd ...1 , and N=3334 is the number of samples for 

staircase change inputs. The results are: 0876.0MSE CS-TP   and 

0746.0MSE CS-TP-GS  . 

The simulation results prove that both the designed CSs ensure zero steady state 
control error and the reference is well tracked. 
In case of GS–TP–CS the overshoot as a measure of the tracking error is bigger 
than in case of TP–CS, but the rise time and settling time are smaller. The smallest 
value of MSE was obtained in case of GS–TP–CS. 
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Fig. 5. Tracking error vs time in the proposed CS with staircase reference signal. 

 
5. Conclusion 
 
The paper presented the design and the validation of two CSs using a combination 
of Tensor Product (TP)–based model transformation and gain-scheduling control 
for mass position control of EACS, namely TP–CS and GS–TP–CS. The GS–TP–
CS consists of an inner TP–based control loop and an outer gain-scheduling 
controller-based control loop. 
The two CS structures were tested on a time horizon of 10 s applying a staircase 
type reference input. The simulation results prove that zero steady-state control 
error was ensured in case of both CSs. The best performance in terms of rise time, 
settling time and MSE is achieved in case of GS–TP–CS. However, a fair 
comparison should account for the complexity of the CS structures, and the 
cascade one is more complicated, hence it is normal to exhibit better over the non-
cascade one. In addition, the number of tuning parameters and the simplicity of 
design procedure are important factors in the comparison. 
Future research will be focused on the development of hybrid control techniques 
including TPBMT fuzzy control and gain-scheduling TPBMT nonlinear control 
using specific features of several nonlinear techniques outlined in [31]–[36] and 
various applications [37]–[42], aiming the further CS performance improvement. 
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