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Abstract. Perron-Frobenius theory, well-known for non-negative matrices, is applied to 

the study of a category of economic systems described by Leontief-type models. For the 

considered models, the paper presents a qualitative point of view, oriented towards the 

solution existence / non-existence, as well as a quantitative point of view, oriented towards 

the solution construction. The main instruments used by our study are the structure of 

communication classes and the eigenvalue-eigenvector structure (also called matrix 

eigenstructure). A numerical case study is used for the illustration of theoretical concepts 

and results. 
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1. Introduction 

 

The algebraic theory developed by Perron and Frobenius for non-negative matrices 

is applied to study economical systems with autonomous structure. To this end, the 

current section introduces the necessary mathematical notations (subsection 1), 

discusses the category of envisaged economic models (subsection 2), and provides 

an overview for the organization of the whole text (subsection 3). 
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1.1.  Notations for the use of Perron-Frobenius theory 

 

The notation   mn

ij RxX  designates a real matrix (in particular, a vector). The 

notation 0X , meaning 0ijx  , 1, ,i n , 1, ,j m , denotes a non-negative 

matrix. The notation 0X , meaning 0X  and 0X , denotes a semi-positive 

matrix. The notation 0X , meaning 0ijx  , 1, ,i n , 1, ,j m , denotes a 

positive matrix. The notation tX  denotes the transposition of matrix X . For a 

vector 
nRx , we also use the equivalent writing 0  xRx n

, and 

  0Int   xRx n
, respectively. For two matrices, [ ]ijxX , 

  mn

ij RyY  , the notations X Y , X Y  and YX   mean 0 X Y , 

0 X Y , and 0YX , respectively. 

For a square matrix, 
nnRM  , the notation     0det   zI-MRzM  

designates its spectrum, and ( ) ( )i M M , 1, ,i n , are its eigenvalues. If M 

is non-negative, then its spectral radius ( ) M , that satisfies | ( ) | ( )i M M  for 

1,...,i n , is an eigenvalue, i.e. ( ) ( ) M M .  

Let matrix 
nnRM   be non-negative and let ( )G M  stand for the directed graph 

associated with M. Let 1 ,i j n  . It is said that:  state i has an access to state j, 

denoted by i j , if there exists a path from node i to node j in ( )G M ;  states i 

and j communicate, denoted by i j , if i j  and j i . Matrix M is called 

irreducible if the directed graph ( )G M  is strongly connected, i.e. any two nodes 

communicate; otherwise M is called reducible. [1]. 

A non-negative matrix 
nnRM   has a non-negative right eigenvector 0v , 

which satisfies || || 1v  and a non-negative left eigenvector 0w , which satisfies 

|| || 1w , both of them corresponding to the eigenvalue ( ) M . Depending on the 

irreducibility / reducibility of matrix M, we consider the following cases [1]:  If M 

is irreducible, then (i) ( ) M  is a simple eigenvalue, called the Perron-Frobenius 

eigenvalue; (ii) Both eigenvectors v , w  are positive, i.e. 0v , 0w , and are 

called the right and left, respectively Perron-Frobenius eigenvectors.  If M is 

reducible, then the positiveness / non-negativeness of the eigenvectors v , w  is 

related to the matrix communication classes of M [2]. 

For a non-negative matrix 
nnRM  , the communication relation, which is an 

equivalence relation on ( )G M , allows partitioning the set of states {1,2,..., }n  into 

the equivalence classes of M [2]. We say that a class   has an access to a class   

if there exist i   and j  , so that i j . A class   is called final, if   does 

not have access to any other class; otherwise   is called non-final. A class   is 

called basic, if the condition ( [ ]) ( )  M M  is met, where [ ]M  denotes the 
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submatrix of M built with the indices in  ; otherwise a class   is called non-

basic, i.e.. if the condition ( [ ]) ( )  M M  is met. In this paper, the set of final 

classes of M is denoted by F , whereas F  stands for the set of non-final classes. 

Similarly, the set of basic classes od M is denoted by B , whereas B  stands for the 

set of non-basic classes. 

 

1.2. The considered category of economic systems 

 

Consider an economic system with n sectors labeled 1, ,i n . The input of sector 

i is denoted by iy , and the output by ix . It is assumed that the system operates in 

an autonomous manner, in the sense that the input of each sector i can be ensured 

by a linear combination of the outputs of the n sectors of the economic system, 

with following form: 

 
1

, 0, 1, ,
n

i ij j ijj
y t x t j n


   , 1, ,i n . (1) 

Equalities of type (1) must be seen as expressed by the help of adequately scaled 

values, allowing the mathematical connection of the outputs of the various sectors. 

The autonomous functioning of the economic system is based on the satisfaction of 

inequalities 

 i iy x , 1, ,i n ,  (2) 

which, together with equalities (1), lead to the inequalities 

 Tx x ,   nn

ij RtT 

 , , 1, ,i j n , (3) 

where the matrix T is non-negative. Inequalities (3) provide for the considered 

economic system a Leontief model of autonomous- or closed-type. Details about 

the use of this model can be found in Leontief's economic work [3], as well as in 

works devoted to positive (non-negative) systems, such as [2], [4]-[6]. 

 

1.3. Objectives and organization of our work 

 

In this article we study the solvability of the inequality set (3) which involves 

different approaches depending on the irreducibility / reducibility of the matrix 
nnRT 

 . Our investigation will point out how to use the Perron-Frobenius theory 

in the above-mentioned situations. The situation of matrix T  irreducible and 

( ) 1 T  is well-known in literature, when inequalities (3) are solved as equalities, 

the solution being given by the Perron-Frobenius right eigenvector of the matrix 

T . Instead, the literature referring to the other situations of inequalities (3) is rather 

scarce. The solvability of inequalities (3) is addressed in Chapter 9 of the 

monograph [2] that relies on the block triangular form of the matrix T , and in our 

recent paper [6] that is based on the properties of the communication classes of the 

matrix T . In both mentioned works the solvability of inequalities (3) is analyzed in 

qualitative terms, in the sense of the existence or non-existence of certain types of 
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solutions (called equilibrium solutions or feasible solutions – details are available 

in the next section). 

The present article exploits the point of view recently elaborated by [6]; the new 

developments proposed by the cited paper aim at constructing solutions in 

quantitative terms, especially for the solutions called feasible. The remaining 

sections of the article are organized as follows. Section 2 deals with the qualitative 

analysis of the solutions to inequalities (3), summarizing our results reported in the 

previous paper. Section 3 sets out a quantitative approach to solvability in terms of 

construction methods, the actual implementation of which uses the qualitative 

results in Section 2. Section 4 illustrates the theoretical developments for a fifth-

order Leontief system that allows discussing many details in terms of both 

qualitative analysis and quantitative construction. Section 5 provides a series of 

final comments on the significance of the research presented in the paper. 

 

2.  Qualitative analysis of solutions 

 

To analyze, from a qualitative point of view (i.e. not necessarily on concrete 

values), the solutions of the system described by a model of form (3), we consider 

two types of solutions (associated with two distinct sets of solutions) - as shown by 

the following definition, which was adapted in accordance with the paper [6]. 

 

Definition 1. Consider a system described by model (3). 

(a) The vector 0x  represents a feasible solution for the considered system, if 

inequalities (3) are satisfied. The set 

  xTxxRx n

f 


 ,1x ,0X  (4) 

is called the set of feasible solutions. 

(b) The vector 0x  represents an equilibrium solution for the considered system 

if inequalities (3) are satisfied as equalities. The set 

  xTxxRx n

e 


 ,1x ,0X   (5) 

is called the set of equilibrium solutions. ■ 

Subsections 2.1 and 2.2 composing this section draw attention to the fact that the 

qualitative analysis of solutions can be addressed in two distinct ways that rely on 

the properties of matrix T, by exploring either the communication classes of the 

matrix T, or the Perron-Frobenius eigenstructure of matrix T. This qualitative 

analysis of the solutions is required whenever matrix T of model (3) is reducible. 

 

2.1. Use of communication classes 

 

The investigation of communication classes is a fundamental procedure (e.g. [2]) 

for testing the positiveness of the eigenvectors associated with Perron-Frobenius 

eigenvalue of a reducible matrix. Proposition 1 below extends this procedure to the 

qualitative analysis of the solutions to inequalities (3). 
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Proposition 1. Consider a system described by model (3) and the solution sets fX  

(4), eX  (5). Denote by 
nRv , 0v , || || 1v , the nonnegative right eigenvector 

of the matrix T that is associated with the eigenvalue ( ) T .  

(a) If ( ) 1 T , then e f  X X . 

(b) If ( ) 1 T  and 

    (b-1) T  is irreducible, then { }e f  vX X . 

    (b-2) T  is reducible and  B F , then e f  X X . 

     (b-3) T  is reducible and B F , then f  X  with the following two subcases: 

          (b-3.1) { }e vX , when B F . 

          (b-3.2) e  X , when  B F . 

(c) If ( ) 1 T , then f  X  and e  X . 

Proof: See our previous paper devoted to Leontief systems [6].  ■ 
 

The practical use of Proposition 1 is not always convenient, the difficulties being 

generated by the identification of the communication classes and their types 

(because real cases generally mean manipulating matrices of large sizes). 

 

2.2. Use of Perron-Frobenius eigenvectors 

 

The objective of the current subsection is to present a solvability analysis for 

inequalities (3) which does not use the communication classes of matrix T, so that 

the disadvantage discussed at the end of the previous subsection can be avoided. 

Proposition 2 below exploits the Perron-Frobenius eigenstructure of the matrix T, 

the numerical calculation of which is much easier than the manipulation of 

equivalence classes. Proposition 2 is formulated for the situation that is most 

commonly encountered in practice, namely issue (b) of Proposition 1. 
 

Proposition 2. Consider a system described by model (3) and the solution sets fX  

(4), eX  (5). Assume that ( ) 1 T  is a simple eigenvalue. Denote by 

  n

n Rvvv 
t

1 , 0v , || || 1v , and   n

n Rwww 
t

1 , 0w , || || 1w , 

the right and left, respectively, eigenvectors of matrix T, associated with the 

eigenvalue ( ) T . 

(i) There exists a non-empty set of indices {1, , }nI  such that for any ii I  the 

condition 0iv  , 0iw   is fulfilled. 

(ii) Define the set of indices {1, , } \nJ I .  

     (ii-1) If  J , then { }e f  vX X . 

     (ii-2) If  J  and 0jw   for at least an index ji J , then e f  X X . 
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     (ii-3) If  J  and 0jw   for all indices ji J , then f  X , including the 

following two subcases: 

         (ii-3.1) { }e  vX , when 0jv   for all indices ji J ; 

         (ii-3.2) e  X , when 0jv   for at least an index ji J . 

Proof: See our previous paper devoted to Leontief systems [6]. ■ 
 

Proposition 2 shows that the direct examination of the eigenvectors associated with 

the simple eigenvalue ( ) 1 T  allows us to discuss the solvability of inequalities 

(3), without having to determine the communication classes of matrix T. Besides 

the fact that the Perron-Frobenius right eigenvector is an equilibrium solution - in 

the case of system (3) satisfied by equalities, the structure of both left and right 

eigenvectors provides complete information on the existence / non-existence of 

feasible solutions - in the case of system (3) satisfied by inequalities. We 

emphasize the idea that this information is only of a qualitative nature, and that the 

next section will deal with the construction of solutions corresponding to concrete 

numerical values. 

 

3. Construction of solutions 

 

The current section is devoted to the proper construction of feasible solutions 

corresponding to situation (ii-3) of Proposition 2 stated in the previous section. The 

result below (Proposition 3) will highlight the construction technique based on the 

concrete calculation of the eigenvectors for a non-negative matrix that majorizes 

matrix T. At the same time, Proposition 3 also discusses the construction of 

feasible solutions in the case ( ) 1 T  - case which has not been addressed in 

qualitative terms by Proposition 2 (to ensure the simplicity of exposure). 

Proposition 3. Denote by 
nnR  , 0  , a non-negative matrix, by T  a matrix 

built as   T T , and by 
nRv 

, 0 v , || || 1 v , the right eigenvector of 

T  associated with the spectral radius ( ) T . 

(a) Consider a Leontief system of form (3) and the hypothesis of Proposition 2  

(ii-3). There exists a set of non-negative matrices 
nnR 

aD  such that for any 

aD  the right eigenvector v  of matrix T  represents a feasible solution, i.e. 

f v X . 

(b) Consider a Leontief system of form (3) with ( ) 1 T . There exists a set of 

non-negative matrices 
nnR 

bD  such that for any bD  the right eigenvector 

v  of matrix T  represents a feasible solution, i.e. f v X . 

Proof: The proof is constructive for both case (a) and case (b). For the perturbation 

matrix 0   and for the componentwise majorized matrix   T T  we can 
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write t 0  P P  of form (6) and t
    T PT P T , respectively, where P  

denotes a permutation matrix. 

At the same time, the proof exploits a series of constructive details presented by 

our earlier work on Leontief systems [6], which are not entirely reproduced by the 

current text. Relying on these details, one can conclude that the situations in 

Proposition 1 (b) refer to the following cases: 

(I) T  irreducible – corresponds to hypothesis (b-1). 

(II) T  reducible and B F  - corresponds to hypothesis (b-2). 

(III) T  reducible and B F  - corresponds to hypothesis (b-3.1). 

(IV) T  reducible and B F  - corresponds to hypothesis (b-3.2). 

(a) Define the set of non-negative matrices 
nnR 

aD  such that for any aD , the 

matrix t  P PΔ  has form (6) with 0gs  , 2 ,s g k  , 1s g  , and at least one 

block satisfies 0gs  . Notice that the diagonal blocks of the matrix T  are found 

in an identical form in matrix T , fact which means that for the spectral radii of 

these blocks we can write ([ ] ) ([ ] ) ( )ss ss ss    T T T , 1 s k  . 

The hypothesis of Proposition 2 (ii-3) corresponds to cases (III) and (IV) 

mentioned above, which permit the analysis of the connections between the form 

of the eigenvectors and the structure of the communication classes. 

21

( 1)1 ( 1)2

t
1 2 ( 1)

( 1)1 ( 1)2 ( 1)( 1) ( 1)

( 1)1 ( 1)2 ( 1)( 1) ( 1) ( 1)( 1)

1 1 ( 1) ( 1) (

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

g g

g g g g

g g g g g g

k k k g k g k g

k k k g kg k g k k



 

   

   

    

     

 



    

      

  

 P P

1) 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(6) 

• If the structure of matrix T  belongs to case (III) (corresponding to hypothesis  

(ii-3.1)), then, for any perturbation matrix of form (6), the structure of matrix T  

also belongs to case (III). Thus, we have 

 0~   Pvv , (7) 

and we can write 

 ( )            Tv Tv v T v T v v   (8) 

By using the inverse permutation, we get  

 t t t t t( ) ( )( )         P Tv P v P TP P v P v Pv v  (9) 

showing hat f v X . In other words, under the hypothesis (ii-3.1) of Proposition 

2, besides the equilibrium solution there also exist feasible solutions generated by 
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the right eigenvector associated with the simple eigenvalue ( ) 1  T  of the 

matrices of the form   T T . 

• If the structure of matrix T  belongs to case (IV) (corresponding to hypothesis  

(ii-3.2)), then one can apply the case denoted as (IV-b) in our paper [6], where 

11( ) 1 T , s , 2 s k  , ( ) 1ss T , and g , 2 g k  , such that s , 

1 1s g   , 0gs T  (meaning that 11T  is the only fundamental block, 11T  is final, 

ggT , 2 g k  , is final). Subsequently, the components of the right eigenvector 

satisfy 01 v ; 0s v , 2 s k  ; 0g v , whereas the components of the left 

eigenvector satisfy 01 w ; 0s w , 2 s k  . By considering the index g, 

2 g k  , we take 0gs   for all s , 1 1s g   . Thus, for all resulting matrices 

T , the structure belongs to case (III), and relations (7) – (9) written above 

preserve their validity for the current case. In other words, under the hypothesis  

(ii-3.2) of Proposition 2, there exist feasible solutions generated by the right 

eigenvector associated with the simple eigenvalue ( ) 1  T  of the matrices of the 

form   T T . 

(b) If ( ) 1 T  is a simple eigenvalue of matrix T , then we can resolve the vector 

inequality (3) by the help of Proposition 2 and Proposition 3 (a) applied to the 

vector inequality T x x , where the matrix  1/ ( )T T T  has the simple 

eigenvalue ( ) 1 T . Indeed, if the vector inequality T x x  is true, then the 

vector inequality xxTxT   is also true, that is fx X . This approach has a 

disadvantage, namely that it cannot build solutions when matrix T  is reducible and 

B F  , although these solutions exist (according to Proposition 1 (c)). The 

disadvantage is due to the fact that the reducibility and the structure of the 

communication classes are essential issues only for the spectral radius equal to 1. 

Although the original form of the vector inequality (3) considers ( ) 1 T , the 

approach presented by us is supposed to resolve T x x , with ( ) 1 T . To 

eliminate this disadvantage, we can define the set of positive matrices 
nnR 

aD  

of form 

 ( ) , 0n n    1 , (10) 

where n n1  denotes the matrix of size n n  with all entries 1. By using these 

perturbation matrices, the majorizing matrices ( ) ( )   T T  are irreducible, 

and the right eigenvector associated with ( )( ) T  is positive, that is   0 v . 

Additionally, the value 0   can be chosen so that ( )( ) T  is as close to 

( )( ) T  as we want. Indeed, Lemma 3 in [7] shows that for any 0  , there 

exists ( ) 0    such that for all 0 ( )     we have ( )( ) ( ) ( )     T T T . 
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Subsequently, once the condition ( ) 1 T  is fulfilled, we will always be able to 

build a set of matrices   0   for which ( )( ) 1  T  and we can write 

 

 
            

          .           















vvTvT

vTvTvTv
 (11) 

Thus, the proof of both parts (a) and (b) is completed.  ■ 
 

The proof of Proposition 3 shows that the construction procedure for feasible 

solutions requires the identification of communication classes and their types. The 

apparent advantage of the strategy operating only with the eigenvectors (without 

the exploitation of the information provided by the communication classes) is 

actually limited to the qualitative analysis of the solutions to inequalities (3). 

 

4. Case study 

 

Consider an economic system described by a model of form (3) as follows 

 

1 5 1

2 4 2

1 2 3 4 5 3

2 4 4

1 5 5

0.3 0.6

0.5 0.5

0.2 0.1 0.4 0.1 0.3

0.7 0.3

0.6 0.2

x x x

x x x

x x x x x x

x x x

x x x

 

 

    

 

 

 (12) 

 

4.1. Solutions to system (12) – Qualitative analysis 

 

For the system matrix 

 

0.3 0 0 0 0.6

0 0.5 0 0.5 0

0.2 0.1 0.4 0.1 0.3

0 0.7 0 0.3 0

0.6 0 0 0 0.2

 
 
 
 
 
  

T  
(13)

 

the eigenvalue ( ) 1 T  is simple, and its associated right and left eigenvectors are 

 t[0  1  .0000   0.3333  1  .0000   0]v , (14) 

 t[0  1  .0000   0   0.7143   0]w . (15) 

In order to apply Proposition 1 we investigate the communication classes of the 

matrix T . They are {1,5}, {2,4}, {3}, as resulting from the permuted matrix 
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 t

0.5 0.5 0 0 0

0.7 0.3 0 0 0

0 0 0.3 0.6 0

0 0 0.6 0.2 0

0.1 0.1 0.2 0.3 0.4

2 4 1 5 3

2

4

1

5

3

 
 

  
 
 
  

PTP t , 

2

4

1

5

3

 
 
 

  
 
 
  

e

e

P e

e

e

. (16) 

The spectral radii of the three blocks are ( [2,4]) 1 M , ( [1,5]) 0.8521 M , and 

( [3]) 0.4 M . These classes correspond to the strongly connected subgraphs of 

the graph ( )G T  as illustrated in fig. 1. Class {1,5} is non-basic and final; class 

{2,4} is basic and final; class {3} is non-basic and non-final. Subsequently, 

B F , with B F  and the statement (b-3.2) of Proposition 1 yields e  X , 

f  X . 

We also investigate the structure of the eigenvectors associated with the eigenvalue 

( ) 1 T , in order to apply Proposition 2. Hence {1,3,5}J , with 1 10, 0v w  , 

3 30, 0v w  , 5 50, 0v w  , and the statement (ii-3.2) of Proposition 2 yields 

e  X , f  X . 

As expected, the qualitative analysis of solutions based on Proposition 1 and 

Proposition 2, respectively, leads to the same result. 
 

 
Fig. 1. Strongly connected subgraphs corresponding to the graph of matrix T. 

 

4.2. Solutions to system (12) – Construction 

 

By applying Proposition 3(a) we can build matrices   T T  majorizing matrix 

T , which are able to change the type of class {1,5} - from non-basic and final, to 

non-basic and non-final. For example, such a matrix is 
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0.3 0.001 0 0.001 0.6

0 0.5 0 0.5 0

0.2 0.1 0.4 0.1 0.3

0 0.7 0 0.3 0

0.6 0.001 0 0.001 0.2

 

 
 
   
 
 
  

T T , (17) 

where 

 

0 0.001 0 0.001 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0.001 0 0.001 0



 
 
 
 
 
 
 
 

. (18) 

The majorizant matrix T  has the same communication classes as T , in 

accordance with the permuted matrix 

 t

0.5 0.5 0 0 0

0.7 0.3 0 0 0

0.3 0.0.001 0.001

0.001 0.001

6 0

0.6 0.2 0

0.1 0.1 0.2 0.3 0.

2 4 1 5 3

2

4

1

4

5

3



 
 

  
 
 
  

PT P t .
 (19) 

Instead, for matrix T , the class {1,5} is non-basic and non-final, and the class 

{2,4} is the only basic class and the only final class. Subsequently, a feasible 

solution to inequalities (3) (but not equilibrium solution) is ensured by the positive 

vector  

 t[0.0140  1  0.3445   1  0.0130] f  v t X   (20) 

representing the right eigenvector of matrix T , associated with the eigenvalue 

( ) ( ) 1   T T . A generalization of the above numerical construction is a 

straightforward task. For any perturbation matrix   having the positive entries 

1,2 0  , 1,4 0  , 5,2 0  , 1,4 0  , and all other entries 0, a majorizant matrix 

T  is obtained, the right eigenvector of which is positive and represents a feasible 

solution of inequalities (3). At the same time, it will be noticed that, regardless of 

the concrete values of the non-zero entries of the matrix   (with the structure 

considered above), the left eigenvector remains unchanged, that is 

 t[0  1  .0000   0   0.7143   0]  w w t . (21) 

 

5.  Concluding remarks 

 

The paper creates a deeper insight into the framework of algebraic connections 

between the non-negative matrices defining Leontief models and the solutions that 

these models can have. It is shown that the Perron-Frobenius theory is an effective 
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tool for both qualitative and quantitative approach. Qualitative treatment involves 

the solvability analysis that guarantees the existence or absence of solutions, while 

quantitative treatment involves construction procedures that provide concrete 

solutions. Both aspects are equally highlighted by a case study considered to offer 

practical illustration for the conceptual values presented in the paper. 
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