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Abstract. In this paper, we reveal a dual-tensor-based procedure to obtain exact 
expressions for the six degree of freedom (6-DOF) relative orbital motion problem of two 
spacecrafts, in the specific case of Keplerian confocal orbits. The result is achieved by pure 
analytical methods in the general case of any leader and deputy motion, without 
singularities or implying any secular terms. Orthogonal dual tensors play a very important 
role, with the representation of the solution being, to the authors' knowledge, the shortest 
approach for describing the complete onboard solution of the 6-DOF orbital motion 
problem. The solution does not depend on the local-vertical–local-horizontal (LVLH) 
properties involves that is true in any reference frame of the leader with the origin in its 
mass centre. A representation theorem is provided for the full-body initial value problem. 
Furthermore, the representation theorems for rotation part and translation part of the 
relative motion are obtained. 
 
Keywords: relative orbital motion, full body problem, dual algebra, Lie group, Lie algebra, 
closed form solution. 
 
1. Introduction 

 
The relative motion between the leader and the deputy in the relative motion is a 
six-degrees-of-freedom (6-DOF) motion engendered by the joining of the relative 
translational motion with the rotational one. Recently, the modelling of the 6-DOF 
motion of spacecraft gained a special attention [1-5], similar to the controlling the 
relative pose of satellite formation that became a very important research subject 
[6-10]. The approach implies to consider the relative translational and rotational 
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dynamics in the case of chief-deputy spacecraft formation to be modelled using 
vector and tensor formalism. 

In this paper we reveal a dual algebra tensor based procedure to obtain exact 
expressions for the six D.O.F relative orbital law of motion for the case of two 
Keplerian confocal orbits.. Orthogonal dual tensors play a very important role, the 
representation of the solution being, to the authors' knowledge, the shortest 
approach for describing the complete onboard solution of the six D.O.F relative 
orbital motion problem. Because the solution does not depend on the LVLH 
properties involves that is true in any reference frame of the Leader with the origin 
in its mass centre. To obtain this solution, one has to know only the inertial motion 
of the Leader spacecraft and the initial conditions of the deputy satellite in the 
local-vertical-local-horizontal (LVLH) frame. For the full body initial value 
problem, a general representation theorem is given. More, the real and imaginary 
parts are split and representation theorems for the rotation and translation parts of 
the relative orbital motion are obtained. Regarding translation, we will prove that 
this problem is super-integrable by reducing it to the classic Kepler problem. 

The paper is structured as following. The second section is dedicated to the rigid 
body motion parameterization using orthogonal dual tensors. The Poisson-Darboux 
problem is extended in dual Lie algebra. In the third section, the state equations for 
a rigid body motion relative to an arbitrary non-inertial reference frame are 
determined. Using the obtained result, in the fourth section, the representation 
theorem and the complete solution for the case of onboard full-body relative orbital 
motion problem is given. The last section is designated to the conclusions and to 
the future works. 

 
Nomenclature 

 = real number 

 = dual number 

 = real vector 

 = dual vector 

 = real tensor 

 = dual tensor 

 = real vectors set 

 = dual vectors set 

= time depending real vectorial functions 

= time depending dual vectorial functions 

 = skew-symmetric dual tensor corresponding to the dual vector  

 = true anomaly 



 
 
 
 
 
 

22  Daniel Condurache / On six DOF relative orbital motion of spacecrafts.  
 A complete onboard solution  
 

 

 = conic parameter 

 = specific angular momentum of the leader satellite 

 = dual-tensor set 

 = real numbers set 

 = dual numbers set 

 = orthogonal real tensors set 

 = orthogonal dual-tensor set 

= time depending real tensorial functions 

= time depending dual tensorial functions 

 
2. Rigid body motion parameterization using dual Lie algebra 

 

The key notion that will be presented in this section is the tensorial 
parameterization that can be used to properly describe the rigid-body motion. We 
discuss the properties of proper orthogonal dual tensorial maps. The proper 
orthogonal tensorial maps are related with the skew-symmetric tensorial maps via 
the Poisson-Darboux equation. Orthogonal dual tensorial maps are a powerful 
instrument in the study of the rigid motion with respect to an inertial and 
noninertial reference frames. More on dual numbers, dual vectors and dual tensors 
can be found in the Appendix and in [2]; [16-23]. 

 
2.1. Isomorphism between Lie group of the rigid displacements  and Lie 
group of the orthogonal dual tensors  
 

Let the orthogonal dual tensor set be denoted by: 
(1) 

where  is the set of special orthogonal dual tensors and  is the unit orthogonal 
dual tensor. 

The internal structure of any orthogonal dual tensor  is illustrated in a 
series of results which were detailed in our previous work [17]; [18]; [23]. 

Theorem  1.. (Structure Theorem). For any  a unique decomposition is 
viable  

(2) 

where  and  are called structural invariants, , . 
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Taking into account the Lie group structure of  and the result presented in 
previous theorem, it can be concluded that any orthogonal dual tensor  
can be used globally parameterize displacements of rigid bodies. 

Theorem  2 (Representation Theorem). For any orthogonal dual tensor  defined 
as in (Eq. (2), a dual number  and a dual unit vector  can 
be computed to have the following equation [17]; [18]: 

(3) 

The parameters  and  are called the natural invariants of . The unit dual 
vector  gives the Plücker representation of the Mozzi-Chalses axis [16]; [24] 

while the dual angle  contains the rotation angle  and the translated 

distance . 

The Lie algebra of the Lie group  is the skew-symmetric dual tensor set 

denoted by , where the internal mapping is 

. 

The link between the Lie algebra , the Lie group , and the exponential map 
is given by the following. 

Theorem  3.. The mapping 

 
(4) 

is well defined and surjective. 

Any screw axis that embeds a rigid displacement is parameterized by a unit dual 
vector, whereas the screw parameters (angle of rotation around the screw and the 
translation along the screw axis) is structured as a dual angle. The computation of 
the screw axis is bound to the problem of finding the logarithm of an orthogonal 
dual tensor , that is a multifunction defined by the following equation: 

 
(5) 

and is the inverse of (Eq. (4)). 

From Theorem  2 and Theorem  3, for any orthogonal dual tensor , a dual vector 

 is computed, represents the screw dual vector or Euler dual 

vector (that includes the screw axis and screw parameters) and the form of  

implies that . The types of rigid displacements that is parameterized by 

the Euler dual vector  as below: 

(i) roto-translation if ; 
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(ii) pure translation if ; 

(iii) pure rotation if . 

Also, , Theorem  2 and Theorem  3 can be used to uniquely recover 

the screw dual vector , which is equivalent with computing . 

Theorem  4. The natural invariants  can be used to 

directly recover the structural invariants  and  from (Eq. (2)): 

(6) 

To prove (Eq. (6)), we need to use (Eq. (2)) and (Eq. (3)). If these equations are 
equal, then the structure of their dual parts leads to the result presented in (Eq. (6)). 

Theorem  5. (Isomorphism Theorem): The special Euclidean group  and 

 are connected via the isomorphism of the Lie groups 

, (7) 

where , ,  

Proof: For any , the map defined in (Eq. (7)) yields 
(8) 

Let . Based on Theorem  1, which ensures a unique decomposition, we can 

conclude that the only choice for , such that  is . This 
underlines that  is a bijection and keeps all the internal operations. 

Remark 1: The inverse of  is 

 
(9) 

where . 

 
 

2.2. Poisson-Darboux problems extended in dual Lie algebra 
 

Consider the functions  and  to be the parametric 
equations of any rigid motion. Thus, any rigid motion can be parameterized by a 

curve in  where , where t is time variable. Let  

embed the Plücker coordinates of a line feature at . At a time stamp  the 
line is transformed into:  

(10) 
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Theorem  6. In a general rigid motion, described by an orthogonal dual tensor 
function , the velocity dual tensor function  defined as 

(11) 

is expressed by  
(12) 

Let , then , equivalent with , which shows 

that . 

The dual vector  is called dual angular velocity of the rigid body 
and has the form: 

(13) 

where  is the instantaneous angular velocity of the rigid body and 

 represents the linear velocity of the point of the body that 

coincides instantaneously with the origin of the reference frame. The pair ( ) is 
usually refereed as the twist of the rigid body. 

The next Theorem permits the reconstruction of the rigid body motion knowing in 
any moment the twist of the rigid body that is equivalent with knowing the dual 
angular velocity [5]; [18]. 

Theorem  7. For any continuous function  a unique dual tensor  
exists so that 

 (14) 

Proof. Consider initially  to be equal to . Equation (14) can be expanded into: 

 (15) 

the real part of the previous expression leads to:  

(16) 

Because  is a continuous function,the initial value problem (16) admits a 
unique solution. 

We will prove that this solution is an orthogonal dual tensor. 

Denote  the transpose of tensor . Computing 

(17) 

it follows that 
(18) 

Since  is a continuous map, , it follows that  is a continuous 

map too. From (18) it results that . Since , 
it follows that: 
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(19) 

Therefore,  is a proper orthogonal tensor map. 

The dual part of (15) gives 
(20) 

which, taking a step further implies that 
(21) 

Using  the previous relation is transformed into the differential 
equation: 

(22) 

that has the solution 

(23) 

where  is the solution of (16). 

The solution of  

(24) 

is 
(25) 

where  is the solution of (14) for . 

Due to the fact that orthogonal dual tensor  completely models the six degree of 
freedom motion, we can conclude that the Theorem  7 is the dual form of the 
Poisson-Darboux problem [28] for the case when the rotation tensor is computed 
from the instantaneous angular velocity. So, in order to recover , it is necessary to 
find out how the dual angular velocity vector  behaves in time and also the value 

of  at time . 

The dual tensor  can be derived from , when is positioned in space, or from 

, which denotes the dual angular velocity vector to be positioned in the rigid 
body. 

Remark  2. The dual angular velocity vector positioned in the rigid body can be 

recovered from , thus transforming (Eq. (14)) into: 

(26) 

(Eq. (14)) and (Eq. (26)) represent the dual replica of the classical orientation 
Poisson-Darboux problem [17]; [28, 29]. 
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The tensorial (Eq. (14)) and (Eq. (26)) are equivalent with 18 scalar differential 
equations. The dual vectors and dual quaternions parameterizations of the 
orthogonal dual tensors allow us to determine some solutions of smaller dimension 
in order to solve the dual Poisson- Darboux problem [5]. 
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3. Rigid body motion in arbitrary non-inertial frame revised 

 

To the author's knowledge, in the field of astrodynamics there aren't many reports 
on how the motion of rigid body can be studied in arbitrary non-inertial frames. 
Next, we proposed a dual tensors based model for the motion of the rigid body in 
arbitrary non-inertial frame. The proposed method eludes the calculus of inertia 
forces that contributes to the rigid body relative state. So, the free of coordinate 
state equation of the rigid body motion in arbitrary non-inertial frame will be 
obtained. 

Let  and  be the dual orthogonal tensors which describe the motion of two 
rigid bodies relative to the inertial frame.  

If  is the orthogonal dual tensor which embeds the six degree of freedom relative 
motion of rigid body C relative to rigid body D, then:  

(27) 

Let  denote the dual angular velocity of the rigid body C and  the dual 
angular velocity of the rigid body D, both being related to inertial reference frame. 
In the followings, the inertial motion of the rigid body C is considered to be 
known. If  is the dual angular velocity of the rigid body D relative to the rigid 
body C, then, conforming with (Eq. (27)): 

(28) 

Considering  being the dual angular velocity vector of the rigid body D in the 
body frame, the dual form of the Euler equation given in [30] results that: 

(29) 

In (Eq. (29)) , where  the force applied in the mass centre and 
 is the torque. Also in (Eq. (29)),  represents the inertia dual operator, which 

is given by , where  is the inertia tensor of the rigid body D 
related to it's mass centre and  is the mass of the rigid body D. Combining 

 with (Eq. (29)) results: 
(30) 

Taking into account that , the dual angular velocity vector can be 
computed from 

(31) 

this through differentiation gives: 
(32) 

If the previous equation is multiplied by , then  
(33) 



 
 
 
 
 
 

 Journal of Engineering Sciences and Innovation, Vol. 2, Issue 4 / 2017 29 

 

 

which combined with  generates: 
(34) 

After a few steps, (Eq. (34)) is transformed into 
(35) 

which combined with (Eq. (30)) gives: 
(36) 

Because , the final equation is: 

 (37) 

The system:  

 

(38) 

is a compact form which can be used to model the six D.O.F relative motion 
problem. In the previous equation the state of the rigid body D in relation with the 
rigid body C is modelled by the dual tensor  and the dual angular velocities field 

. This initial value problem can be used to study the behavior of the rigid body D 
in relation with the frame attached to the rigid body C. In (Eq. (38)), all the vectors 
are represented in the body frame of C, which shows that the proposed solution is 
onboard and has the property of being coupled in  and .  

Next, we present a procedure that allows the decoupling of the proposed solution. 

In order to describe the solution to (Eq. (38)), we consider the following change of 
variable: 

(39) 

This change of variable leads 

to . The 

result is equivalent with  or 
 (40) 

After some steps of algebraic calculus, from (Eq. (39)), (Eq. (40)) and (Eq. (37)), 
results that: 

(41) 

Where  is the dual torque related to the mass center in the body frame of 

the rigid body D and . (Eq. (41)) is a dual Euler fixed 
point classic problem. 

For any , the solution of (Eq. (38)) emerges from 
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(42) 

Making use of (Eq. (39)), results that . If  operator used, the 

previous calculus is transformed into . 
After multiplying the last expression by , we obtain the initial value problem: 

(43) 

Using the variable change (Eq. (39)), the initial value problem (38)) has been 
decoupled into two distinct initial value problems (41) and (43). 

Let  be the unique solution of the following Poisson-Darboux 
problem: 

(44) 

Considering , a representation theorem of the solution of (Eq. (38)) 
can be formulated. 

Theorem  8. (Representation Theorem). The solution of (Eq. (38)) results from the 

application of the tensor  from (Eq. (44)) to the solution of the classical dual 
Euler fixed point problem: 

(45) 

where , . 

 
4. A dual tensor formulation of the six degree of freedom relative orbital 
motion problem 
 

The results from the previous paragraphs will be used to study the six degrees of 
freedom relative orbital motion problem. 

The relative orbital motion problem may now be considered classical one 
considering the many scientific papers written on this subject in the last decades. 
Also, the problem is quite important knowing its numerous applications: 
rendezvous operations, spacecraft formation flying, distributed spacecraft missions 
[3, 4]; [6-10]. 

The model of the relative orbital motion consists in two spacecraft flying in 
Keplerian orbits due to the influence of the same gravitational attraction centre. 
The main problem is to determine the pose of the Deputy satellite relative to a 
reference frame originated in the Leader satellite centre of mass. This non-inertial 
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reference frame, known as "LVLH (Local-Vertical-Local- Horizontal)" is chosen as 
following: the  axis has the same orientation as the position vector of the Leader 
with respect to an inertial reference frame with the origin in the attraction centre; 
the orientation of the  is the same as the Leader orbit angular momentum; the 

 axis completes a right-handed frame. The angular velocity of the LVLH is 
given by vector , which has the expression: 

(46) 

where vector  is  

(47) 

where  is the conic parameter,  is the angular momentum of the Leader,  
being the true anomaly and  is the eccentricity of the Leader. 

We propose dual tensors based model for the motion and the pose for the mass 
centre of the Deputy in relation with LVLH. Both, the Leader satellite and the 
Deputy satellite can be considered rigid bodies. 

Furthermore, the time variation of  is: 

(48) 

In order to a more easy to read list of notations, for  there will be used the 
followings: 

(49) 

 

(50) 

where  is the unity vector of the X-axis from LVLH.  

The full-body relative orbital motion is described by the (Eq.(38)) where the dual 
angular velocity of the Chief satellite is: 

(51) 

and the dual torque related to the mass center of Deputy satellite is: 

(52) 

The representation theorem (Theorem  8) is applied in this case using the conditions 
(48))-(51)), the solution of the Poisson-Darboux problem (44)) is: 

 
(53) 



 
 
 
 
 
 

32  Daniel Condurache / On six DOF relative orbital motion of spacecrafts.  
 A complete onboard solution  
 

 

In (53), we've noted  and  

Theorem  9. (Representation Theorem of the full body relative orbital motion). The 

solution of (Eq. (38)) results from the application of the tensor  from (Eq. 
(53)) to the solution of the classical dual Euler fixed point problem (45)), with  

and  given by (51) and (52). 

 
4.1. The rotational and translational parts of the relative orbital motion 

 

The complete solution of (Eq. (38)) can be recovered in two steps.  

Consider first the real part of (Eq. (38)). This leads to an initial value problem: 

 

(54) 

which has the solution , the real tensor  being the attitude of Deputy in 

relation with LVLH. In (Eq. (54)),  is the angular velocity of the Deputy in 

relation with LVLH,  is the angular velocity of LVLH,  is the resulting torque 

of the forces applied on the Deputy in relation with is mass centre,  is the inertia 
tensor of the Deputy in relation with its mass center. The angular velocity of 
Deputy in respect to LVLH at time  is denoted with  and  is the 
orientation of Deputy in respect to LVLH at time . 

Consider now the dual part of (Eq. (38)). Taking into account the internal structure 
of , which is given by (Eq. (2), after some basic algebraic calculus we obtain a 
second initial value problem that models the translation of the Deputy satellite 
mass centre with respect to the LVLH reference frame: 

(55) 

where  is the gravitational parameter of the attraction centre and  
represent the relative position and relative velocity vectors of the mass centre of the 
Deputy spacecraft with respect to LVLH at the initial moment of time . 

Based on the representation theorem 9, the following theorem results. 

Theorem 10. The solutions of problems (Eq. (54)) and (Eq. (55)) are given by  

 (56) 
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where  and  are the solutions of the the classical Euler fixed point problem 
and, respectively, Kepler's problem: 

(57) 

and 

(58) 

where  
(5
9) 

and  is given by (Eq. (47)). 

Remark  3: The problems (54)) and (55)) are coupled because, in general case, the 

torque  depends of the position vector . 

The relative velocity of the translation motion may be computed as: 

(60) 

This result shows a very interesting property of the translational part of the relative 
orbital motion problem (55). We have proven that this problem is super-integrable 
by reducing it to the classic Kepler problem [11, 12]; [31, 32]. The solution of the 
translational part of the relative orbital motion problem is expressed thus:  

(61) 

The exact closed form, free of coordinate, solution of the translational motion can 
be found in [11, 12]; [31, 32]; [34]. 

 
5. Conclusions 
 

The paper proposes a new method for the determination of the onboard complete 
solution to the full-body relative orbital motion problem.  

Therefor, the isomorphism between the Lie group of the rigid displacements  
and the Lie group of the orthogonal dual tensors  is used. It is obtained a 
Poisson-Darboux like problem written in the Lie algebra of the group , an 
algebra that is isomorphic with the Lie algebra of the dual vectors. 

Using the above results, the free of coordinate state equation of the rigid body 
motion in arbitrary non-inertial frame is obtained.  

The results are applied in order to offer a coupled (rotational and translational 
motion) state equation and a representation theorem for the onboard complete 
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solution of full body relative orbital motion problem. The obtained results interest 
the domains of the spacecraft formation flying, rendezvous operation, autonomous 
mission and control theory. 

 
Appendix 

 

In this appendix we will present some algebraic properties for dual numbers, dual 
vectors and dual tensors. More details can be found in [16], [17], [18], [19], [20], 
[21], [22], [23], [2]. 

 
1. Dual numbers 
 

Consider the set of real dual numbers to be denoted by  
(62) 

where  is the real part of  and  the dual part. The sum and 
product between dual numbers generate a ring with zero divisors structure for . 
Among he many properties of dual numbers, the magnitude and the inverse are the 

ones mostly used in this paper. The magnitude of a dual number fulfils  

and can be computed using , while ist inverse, denoted by 

, exists if and only if  and is computed using 

. Also,  is a zero divisor if and only if . 

Based on these properties results that  is a commutative and unitary ring 
and any element  is either invertible or zero divisor. 

Any differentiable function  can be completely defined on 
 such that:  

(63) 

Based on the previous property, two of the most important functions have the 

following expressions: ; 

. 

 
2. Dual vectors 

 

In the Euclidean space, the linear space of free vectors with dimension 3 will be 
denoted by . The ensemble of dual vectors is defined: 

(64) 
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where  is the real part of  and  the dual part. For dual 
vectors, three products are considered: scalar product (denoted by ), cross 
product (denoted by ), and triple scalar product (denoted by 

). Regarding algebraic structure,  is a free -
module [18]. 

The magnitude of , denoted by , is a dual number which fulfills 

 and can be computed using 

(65) 

where  is the Euclidean norm. For any dual vector , if  then  is 
called unit dual vector. 

Theorem  11 For any , a dual number , and a unit dual vector 

 exist in order to have 
(66) 

The computational formulas for  and  are  

(67) 

Also, for ,  and  are unique up to a sign change. 

 
3. Dual tensors 

 

A Euclidean dual tensor represents a -linear application of  into , where: 

 (68) 

From now on, any Euclidean dual tensor will be shortly called dual tensor and 

 will denote the free -module of dual tensors. Any dual tensor 

 can be decomposed in , where  are 

real tensors. The transposed dual tensor, denoted by , is defined by  
(69) 

while ,  the determinant is 
(70) 

For any dual vector  the associated skew-symmetric dual tensor will be 
denoted by  and will be defined by:  

(71) 
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The previous definition can be directly transposed into the following result: for any 

skew-symmetric dual tensor , the following a uniquely 
defined dual vector, denoted , exists so that 

. The set of skew-symmetric dual tensors is structured as a 
free -module of rank 3 and is isomorph with  [18]. 
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