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Abstract. The paper develops in the case of mixed-mode fracture: criteria of non-
propagation crack and fracture criteria, for mechanical structures, taking into account the 

deterioration, namely general relations for the superposition of loadings corresponding to 

the three fracture modes. It refers to the concepts of stress intensity factor, crack tip opening 

displacement and J-integral; new fracture criteria taking into account the deterioration, the 

rate of loading and the scattering of the material characteristics were established. The 

relations obtained have been compared and verified against experimental data and empirical 

relations reported in literature. The numerical example allows one to comprehend the 

practical use of the established relations. 

 

Keywords: mixed-mode fracture deterioration; stress intensity factor; crack tip opening 

displacement; J – integral; fracture criteria. 

 

1. Introduction 

 

There are numerous cases when a mechanical structure is loaded simultaneously 
and/or successively with different loads determining normal and/or shear stresses. In 

many practical cases, either the crack is not perpendicular to the mode I loading 

direction, or the structure is subjected to multiaxial loading, results in a mixed mode 
stress field near the crack. 

In the papers [1-5] new phenomenological models have been proposed to account for 

the effects superposition of cracked linear-elastic or nonlinear materials, for the 

deterioration, for the rate of loading and for the materials characteristics scattering.  

• If the mechanical structure contains cracks, then, the loading effect due to stresses 
is superimposed on the effect created by the crack characteristic depth, a, using the  
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Nomenclature 

Di, DT - partial deterioration, total deterioration, respectively; 

E - Young’s modulus of elasticity; 

iE  - specific energy ( )III II, I,=i ; 

criE ,  - critical value of iE ; 

( ) ( )τ;σ EE  - specific energy due to normal stress and shear stress, 

respectively; 
G - shear modulus of elasticity; 

Ji - J – integral ( )III II, I,=i ; 

Jic - critical value of Ji ( )III II, I,=i ; 

iK  - stress intensity factor ( )III II, I,=i ; 

icK  - fracture toughness ( )III II, I,=i ; 

crP  - critical specific energy participation; 

iP  - specific energy participation of load i; 

TP  - total specific energy participation; 

Y - shape factor; 
a;2c - characteristic crack depth and crack length, respectively; 

t - time; 

k;k1 - exponents; 
γ - shear strain; 

δi - crack tip opening displacement ( )III  II,  I,=i ; 

δic - critical value of δi ( )III  II,  I,=i ; 

ε - strain; 
σ; σcr - normal stress and critical normal stress, respectively; 

σu; σy - ultimate normal stress, yield normal stress; 

τ; τu - shear stress; ultimate shear stress, respectively. 

 
stress intensity factor. For materials with linear-elastic behavior and relatively low 

plastic deformation capacity the stress intensity factors are: 

 aYK = πσ II ; aYK = πτ IIIII,IIIII, . (1) 

In relationships (1) IY  and IIIII,Y  are geometric factors, whose value depend on the 

structure geometry and on the crack shape. The indexes I, II, and III refer to the 
fracture modes: opening mode (I), sliding mode (II) and tearing mode (III). 

The fracture criteria corresponding to a single fracture mode are ici KK  , where 

III II; I;i =  and icK  is the fracture toughness.  

• Mechanical structures (engines, vessels, ships, aircraft etc…) operate at certain 

operational parameters (pressure, temperature, speed …), in contact with air, water, 

corrosive or erosive substances. The cracks, the aging, the embrittlement (due to fast 
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neutron irradiation, due to hydrogen), as well as fatigue and creep contribute to 

material deterioration. 

But structure deterioration may be also due to the superposition of several actions 
like fatigue and corrosion, fatigue and creep, fatigue and residual stresses, high 

pressure and high temperature, fatigue and corrosion and creep a.s.o. Deterioration 

may proceed slowly in time (aging, creep, fatigue) or suddenly (thermal shock, 

mechanical shock). 
It is useful to take into account the deterioration when the strength or the life time of 

a structure is calculated [6-8]. 

In the case of a fracture featuring all the three fracture modes, it is necessary to 

establish the correlation between IIIIII K and K ;K  and to define a suitable fracture 

criterion. For example, the strain energy release rate for a crack under combined 

mode I and mode II was used [9]. Many criteria have been suggested to predict 

mixed mode I+II fracture such as: the maximum tangential stress (MTS) criterion, 
the maximum energy release rate (G) criterion [10]. 

For example, by using the MTS criterion for mixed modes I and II, applied to rocks, 

this criterion predicts greater value for the pure mode I and lower value for pure 
mode II, comparing to the experimental results; an improving has been obtained with 

the modified MTS criterion (MMTS) used for mixed-mode fracture prediction [10]. 

Other researches on this topic were published by [11-15]. 

Two different energetic criteria have been proposed on the basis of the energy release 

rate corresponding to mode I ( )IG  and mode II ( )IIG  fracture [16], namely linear 

energetic criterion and quadratic energetic criterion. But how to choose between 

these two criteria? 

 

2. How we can solve the strength problem of a cracked structure 

 

The stresses at the crack tip are higher than the stresses far away from the crack. 

• As to solve a strength problem of a cracked structure one can: 

a. calculate the ultimate stress taking into account the shape and the crack 

dimensions ( )ca 2 ; . For example [17-18], 
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where σu, τu are the ultimate normal and shear stress respectively, of uncracked 

sample; ( ) ( )caca uu ; τ;;σ  – the ultimate normal and shear stress, respectively, of the 

cracked sample; ( ) ( )caDcaD ;  ;; τσ  – the deterioration due to crack by normal stress 

and shear stress loading. The deterioration 10  D  is unitless. The exponents 

k1α =  and 11 1α k=  becomes from nonlinear, power law, behavior, 

 
kM εσ σ =   and  1γτ τ

k
M = , (3) 
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where σ;  is normal and shear stress, respectively; σM ; τM ; k and k1 are material 

constants. The strength criterion is given by the eq., 

 ( )caaleq ;σσ  , (4) 

where eqσ  is the equivalent stress (Tresca or von Mises); ( ) ( ) uual ccaca ;σ;σ =  is 

the allowable stress and 1uc  is the safety coefficient; 

b. or establishing the conditions (loads and crack) for crack non-propagation. This 
require a non propagation criterion in the general case of samples/structures with 

cracks, subjected to a normal stress (σ), an in-plane shear stress (τ) and an uniform 

out-of-plane shear stress (τt) (Fig. 1). In a point near the border of the crack, the stress 
field is a combination of the opening-mode, sliding-mode and tearing-mode and it is 

governed by the values of corresponding stress intensity factors III   , KK  and KIII. 

A general dimensionless non-propagation criterion can be written as the following 

function (Fig. 2), 

 ( ) ( )tPKKKKKKF crccccr IIIIIIIIIIII ;; , (5) 

where cc KK IIIII  ; are the critical values of IIIII  and  KK ; the term ( ) 1tPcr . 

In the case of only one fracture mode, the non-propagation criterion is ici KK  , 

with =i I, II and III. 

 
Fig. 1. Simultaneous loading with stresses corresponding to the three fracture modes (I; II; III). 
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Fig. 2. The surface corresponding to initiation of unstable crack propagation. 

 

• The aim of this paper is to establish a non-propagation criteria (5) in the case of a 

sample/structure with a crack, subjected to stresses (σ; τ; τt) which create a stress 

field, a combination of the opening – mode, sliding – mode and tearing – mode. 
Starting from the specific energy concept, using the principle of critical energy 

[1;19], mixed-mode failure (I, II and III) criteria are obtained. These criteria take into 

account the material behaviour, the influence of mechanical characteristics scattering, 

the rate of loading and the deterioration. The criteria were obtained starting with the 
concepts of stress intensity factor, crack tip opening displacement and J-integral.  

 

3. Superposition of loadings using the energy concept. A new approach 

 

At a certain point near the border of the crack, one considers that loading takes place 

simultaneously according to the three fracture modes (I; II and III); the overall load is 

obtained by adding up the partial loadings. However, this cumulative process or 
superposition of loads cannot be done by algebraically summing up the stress 

intensity factors, because the stresses that engendered them behave in a variety of 

ways ( openingσ→ ; slidingτ→  and tearingτ →t ). That is why, one resorts to 

the concept of energy, namely to the concept of specific energy (J/kg or J/m3). 
The participation of the specific energy – a dimensionless variable – is defined [1] as 

the ratio between the specific energy introduced by the effective stress (σ or τ) and 

the critical value corresponding to this stress (σcr or τcr),  
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 ( )
( )
( ) σδ
σ

σ
σ =

crE

E
P  and ( )

( )
( )τ
τ

τ
crE

E
P = , (6) 

where ( )σcrE , ( )τcrE  is the critical value of the specific energy due to normal stress 

and shear stress, respectively; 

 

1, if the normal stress, σ, action is in the sense of the deformation or 
fracture process; 

=σδ          0, if the normal stress has no effect upon the deformation or fracture     (7) 

process; 

-1, if the normal stress, σ, opposes the deformation or fracture process. 

 
The total participation of the specific energies (unitless) is equal to the sum of the 

individual participations [20], 

 ( ) ( ) +=
j

j

i

iT PPP τσ .

 
According to the principle of critical energy, 

– the criterion of non-propagation crack is, 

 ( )tPP crT  ; (8) 

– the fracture criterion corresponds to the equality, 

 
( )tPP crT = , (9) 

where t is the time of loading. The total participation of the specific energies in this 

case is, 

 crcrcr

T
E

E

E

E

E

E
P

,III

III

,II

II
σ

,I

I δ ++= . (10) 

Here the total participation of accumulated specific energy (EI, EII and EIII) is due to 
stresses σ, τ and τt. The denominators EI,cr, EII,cr and EIII,cr in relation (10) are the 

critical values of specific energy EI, EII and EIII, respectively.  

Each term of relation (10) is dimensionless and represents the fracture participation 
in the accumulated specific energy. 

 

4. The total participation of the specific energy based on the stress intensity 

factor 

 

Shear stresses τ and τt always act in the sense of the material fracture. When loading 

occurs according to fracture mode I, stress σ may act in the direction of the crack 
opening or closing. 

The specific energy or density of energy ( )( σE  and ( ))τE  depends on material 

behavior. In the case of liner-elastic behavior, given by Hooke’s law, for uniaxial 

loading, 

 εσ = E  and γτ = G , (11) 
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the specific energies are: 

 ( )
E

E
2

σ
σ

2

=  and ( )
G

E
2

τ
τ

2

= , (12) 

and the critical values of specific energies are, 

 ( )
E

E cr
cr

2

σ
σ

2

=  and ( )
G

E cr
cr

2τ
τ = . (13) 

With Eqs. (6), (12) and (13) one obtains the following Eqs. of the specific energy 
participations, 

 ( ) σ
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Multiplying by aπ  ( IK  and crK I correspond to the same crack a, but different 

stresses, σ and σcr, respectively) at the numerator and denominator, taking into 

consideration relations (1), one gets
 
( ) ( )Iσ KPP  , or 
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Analogously, for the shear stresses one gets, 
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From relations (10), (15) and (16), with ccr KK II = ; ccr KK IIII =  and ccr KK IIIIII = , 

one obtains the expression of total participation, 
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Fracture toughness icK  ( )III II; I;=i  is an acknowledged feature of materials. 

Generally, one has found [21], 

 , and  IIIIIIIIIIII cccc KaKKaK ==  (18) 

where IIIII  and aa  are material constants. 

For metallic materials IIa  may be higher or lesser the unity. For example the steel 

90MnCr8V8 is characterized by 5.1II =a  [21;22]. For nonmetallic brittle materials, 

rocks for example, the Brazilian disk specimens fracture toughness ratio ( )IcIIc KK  

is significantly higher than the theoretical estimations [23]. 

The investigations, for example, of limestone rock from Saudi Arabia have shown 

that specimen diameter and crack type have influence on the measured fracture 
toughness [24]. Mode – I fracture toughness is significantly influenced by specimen 

diameter and crack type, while their effects on Mode – II fracture toughness are 

generally negligible. In the case of straight-notched Brazilian disks made of 
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limestone rock from Saudi Arabia the ratio cc KKa IIIII =  was 2.14 and 2.19 for 84 

and 98 mm disks, respectively [24] and 1.09 related to graphite [23]. This is why it is 
necessary to correlate this ratio with the structure size in the case of rocks, after the 

specimen standard size has been established. Moreover, there are standard specimens 

to measure mode I fracture toughness for rocks, but no standard method for 
determining mode II fracture toughness of rocks [23]; – to establish the value of the 

ratio IcIIc KK  is out of the goal of this paper. 

To account for elastic – plastic effects, equation (1) will be modified taking into 

account, for example the Dugdale plastic zone size [25]. The effect of the small 

plastic zone at the tip of the crack can be corrected by increasing the crack length to 

include the radius of the plastic zone, rp. The effective length is ( )
pra +  instead of a, 

such as the stress intensity factor becomes ( )
praYK += πσI . 

 

5. A new approach of fracture criterion for mixed-mode loading, based on the 

stress intensity factor, taking into account the deterioration 

 

In order to obtain the fracture criterion one uses eq. (9). In the case of engineering 

structures, unlike the case of specimens, ( )tPcr  should also contain the effect of 

deteriorations. Fracture occurs when relation (9) is fulfilled, where [26], 

( )0crP  - for samples of undeteriorated (virgin) materials; 

( ) =tPcr        ( ) ( )tDP Tcr −0  - for deteriorated sample or structures;                   (19) 

( ) ( ) resTcr PtDP −−0  - for deteriorated sample or structures, having 

residual stresses. 

The deterioration concept ( )tD  introduced by Kachanov [27] is calculated as a 

specific energy participation; it is a dimensionless parameter [1]. 

Deterioration ( )tD  is comprised between zero – for virgin, undeteriorated material 

and 1.0 – for a deteriorated material (fractured, excessively deformed). The total 

deterioration,  

 

( ) ( ),=
i

iT tDtD   

where ( )tDi  is the partial deterioration (for the analyzed case, others than the 

deterioration due to cracks). 

Pres is unitless and introduces the influences of residual stresses [28]. 

The mechanical characteristics scattering is taken into account through the specific 

energy participation at 0=t , 
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1 – for ideal materials, or in the case of real materials whose mechanical 
characteristics are mean statistical values (deterministic values); 

( )=0crP         (20) 

( ) ( )00 max,min, crcr PP   – for real material samples whose mechanical 

characteristics have a stochastic distribution, where ( ) 10max, crP  and 

( ) 00min, crP . 

 

Because ( )  1 ;0tDT , for real structures without residual stresses, ( ) 1tPcr . 

With Eqs. (9) and (17), it results the following general fracture criterion for linear-

elastic materials, as a result of loading superposition, according to the three modes 

of fracture, taking into account the deteriorations, 
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Eq. (21) corresponds to a specimen statically loaded. This Eq. describes the surface 

corresponding to the initiation of unstable crack propagation in a linear-elastic 

material (Fig. 2). 
By the same procedure for a nonlinear, power law, behavior (3), one obtains [1], 
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, (22) 

where α = 1/k and α1 = 1/k1. 
In case the loads are applied by shock the exponents are replaced by 1.0 but if the 

loading is rapid in relations (21) the exponents are replaced by 1.5 (as reported by 

Faupel [29]). 
Considering a deterministic, mean statistical values of the mechanical characteristics 

(yield stress, ultimate stress, toughness…), ( ) 10 =crP , such as generally, 

 ( ) ( ) rescr PtDtP −−=1 . (23) 

If, 

 
( )tPP crT   - loading is subcritical; 

                          
( )tPP crT =  - loading is critical; (24) 

 
( )tPP crT   - loading is supercritical. 

Eqs. (21) superposes the effect of the three modes of failure in the case of linear-

elastic behavior of the specimen material; it allows to account for the rate of loading, 
for the values of mechanical characteristics scattering, as well for the deterioration 

(other than due to cracks) and residual stresses. 
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This result is quite different from MTS (maximum tangential stress) and MMTS 
(modified MTS) criteria used for rocks [10;23;24]. For such brittle materials loaded 

in compression, the maximum stress theory was used to predict failure. 

According to [10], after experimental work on marble rock materials it was 
concluded: “there is a high difference between the experimental and theoretical 

results suggested by the MTS criterion. In the case of mixed modes, this criterion 

predicts greater values around the pure mode I and lower values around pure mode 

II, relative to experimental results”. 
On the other side, in [23] it is reported that “the classical MTS criterion” predicts that 

the fracture toughness ratio IcIIc KK /  for any brittle material is a constant value 

equal to 0.866, but this value is significantly different from the experimental results”. 

The proposed criteria in this paper is in good agreement with many experimental 
results. But, a challenge may be to replace the Eqs. like (21) with Eqs. based on the 

critical stresses relied on crack sizes [30]. 

 
6. Verification of the proposed general fracture criteria (21) and (22) 

 

6.1. Verification by empirical relations 

 
There are some empirical relations for effects superposition in fracture mechanics. 

Through these empirical relations, the general fracture criteria (21) and (22) 

developed in this paper will be verified. 

If ( ) 1=tPcr  and 1δσ =  (σ is a tension stress), introducing different values for the 

exponents, Eq. (22) becomes the empirical relation proposed by Panasyuk [31;32],  
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, (25) 

where 1n , 2n  and 3n  are – structural – sensitive parameters determined from the 

experiment. In comparison with criteria (21) and (22) eq. (25) is a particular case. 
The criteria (21) and (22) obtained on the basis of material behavior comprises the 

effect of the stress σ sign, the effect of mechanical characteristics scattering ( )( )0crP , 

the effect of deterioration (others than due to crack) and residual stresses. 

For an undeteriorated sample, without residual stresses, in case σ opens the crack 

( )1δσ =  and ( ) 10 =crP , one obtains the empirical case reported in the paper [21] as 

fracture criterion. 
From the general relation (21) we get: 

– for the first two modes of fracture, in the case of linear – elastic behavior,  
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With 1δσ =  and ( ) 1=tPcr obtains the relationship reported by [33;34]; 



 

 

 

 

 

Journal of Engineering Sciences and Innovation, Vol. 6, Issue 1 / 2021 

 

 

 

 

 

 

 

21 

– for the first and the third mode of fracture, in the case of linear-elastic behavior, 

one obtains, 

 ( )tP
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If ( ) 1=tPcr  and 0σ  , eq. (27) becomes the relationship reported by [35]; 

– for the second and the third mode of fracture, it results, 
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6.2. Verification by experimental results 

 

Mechanical characteristics generally experience stochastic values which accounts for 

the critical participation values; it ranges over an interval, 

( ) ( ) ( )tPtPtP crcrcr max,min, =  as one may see in figure 3 and in the papers 

[33;34;36]. Consequently, even Eq. (26), a particular case of relation (21), is more 
general than the empirical relation (25), as it takes into consideration the influence of 

the stochastic distribution of the mechanical characteristics, through the value of 

( )0crP . The experiments have shown that ( ) 1tPcr . The points obtained 

experimentally for aluminium, aluminium alloy, aluminium composite and stainless 
steel specimens loaded in fracture modes I and II are located between the curves 

drawn by relation (26) for ( ) 9.0=tPcr  and 1.0 (Fig. 3). 

 
Fig. 3. Comparisons of predicted ((26) with ( ) 9.0=tPcr

 and 1.0) and experimental results of loads 

superposition in the case of mode I and II of fracture, when σ opens the crack ( )1δσ = . 
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Fig. 4. Experimental results in the case of a polymetilmetacrilate sample under mixed-mode I and II 

loading (reported as 
cKK III

 versus 
cKK II

 in the paper [43], represented here as 
cKK IIII

 versus 

cKK II
 (● – experimental points; the curves are drawn by relation (26) with ( ) 0.1=tPcr

 and 0.84). 

 

 
Fig. 5.  a. Comparisons of predicted (27)   and experimental results of effects    superposition [44]. b. 

prediction of mixed mode fracture resistance for Neiriz marble rock on the basis of criterion (Eq. (29)) 

proposed in this paper. Points (•) are test data [10]). 

 

The results of mixed mode I and II fracture experiments in the case of a 

polymetilmetacrilate (PMMA) specimen, given in figure 4, a describes the 

dependence of IcII KK , versus IcI KK  [43]. The value in the origin of the ordinate 

is 8.0III cKK . In the ordinate 1IIII =cKK  the result is cc KK III 8.0=  or 

cc KK III 25.1= . That means: on the ordinate the experimental points must be 
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translated to 1.25 times the values reported in the paper [43]. One obtains figure 4, 

which corresponds to relation (26) with ( ) 1=tPcr  and 0.84. 

In the case of the first and third fracture mode for a specimen of mild steel, relation 

(27) is verified with ( ) 9.0=tPcr  (Fig. 5, a). The experimental points used in 

figures 4 and 5, a have been reported in the paper [44] describing the dependence of 

cKK II  vs. cKK III  and cKK II  vs. cKK IIII  instead of cKK II  vs. cKK IIII  

and cKK II  vs. cKK IIIIII  as in the present paper. 

For marble rock the critical shear stress in front of crack tip is considered a 

constant material property; it depends on stress intensity factors IK  and IIK  [10]. 

As to predict the mixed mode fracture of such brittle materials the maximum 

tangential stress (MTS) criterion and the modified maximum tangential stress 
(MMTS) criterion have been used. 

As to illustrate the dependence IIcII KK /  vs. ,/ IcI KK  one calculates from paper 

[10] the mean value on the ordinate, .162.1IcII KK  Because in the origin of the 

ordinate ,1/ =IIcII KK  it results 162.1=IIcK IcK  or 8606.0=IcK .IIcK  That 

means: on the ordinate IIcII KK /  the experimental points must be translated to 

0.8606 times the values reported. One obtains figure 5, b where the line drawn 

corresponds to ( ) 1=tPcr  and to Eq. (21) in the case of loads applied by shock, 

namely, 

 1
II

II

I

I =+
cc K

K

K

K
. (29) 

It seems to be in better agreement with experimental results than MTS and MMTS 

criteria do. This comparison need extended researches. 

The curves in Figures 6, drawn on the basis of the general Eq. (21) show a good 
agreement with the experimental data reported in literature. 

The experimental data from literature systematized by [45], were changed as in 

Figures 4 and 5, considering the: 

– ratio cKK IIII  instead of cKK III  (Fig. 6, a) ; 

– ratio cKK IIIIII  instead of cKK IIII  (Fig. 6, b) ; 

– ratios cKK IIII  and cKK IIIIII  instead of cKK III  and cKK IIII , respectively 

(Fig. 6, c). 

The curves in Figure 6 have been drawn with the particular Eqs. (26) – (28), taking 

1δσ =  and ( ) 1=tPcr . 

For uniaxial compressive applied stress for a glass plate specimen with an inclined 

crack, some experimental values have been reported by [48]. Figure 7, a shows the 

experimental results of the IIIII KKK c   locus for compressive applied stresses of  
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Fig. 6. a. Fracture curve for mixed mode I and II based on eq. (26). The experimental data from [46]; b. 
fracture curve for mixed mode I and III based on eq. (27). The experimental data from [46;47]; c. 

fracture curve for mixed mode II and III based on eq. (28). The experimental data from [46;47]. 

 

 

cracked glass. The IIIII KKK c   curve for compression is basically different from 

that in tension. A crack under mode – I does not extend in compression, such as the 

curve does not intersected the K1 – axis [48]. Because glass is a brittle material, in 

this case ,0III K  from relation (21) or (26) one obtains, 

 

,1

5.0
2

I

I

II

II
















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







+=

cc K

K

K

K
 (30) 

where ( )tPcr  was replaced by ( ) 1=tPcr  and 1δσ −=  because the stress ( )0σ   

in this case closes the crack. 

Figure 7, a shows the increase of the ratio IIcII KK  when 0σ   and 0I K . This 

experimental result is in accordance with the theoretical one given by Eq. (30). 
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Fig. 7. a. The increase of the ratio KII/KIIc with KI for compression normal stress ( )0σ   in cracked 

glass (processed after [48]); b. the curve drawn by relation (26) for 1δσ =  and 1− . 

 

Figure 7, b shows graphically the relation (26) where ( ) .1=tPcr  Curve AB 

corresponds to tensile stress σ, which opens the crack ( )1δσ = , while curve BC 

corresponds to compressive stress σ that closes the crack ( )1δσ −= . The maximum 

value of the 2/ IIII =cKK  is obtained for 1/ II =cKK , according to relation 

(30). 
 

7. A fracture criterion for mixed – mode loading, based on the crack tip opening 

displacement (CTOD), taking into account the deterioration 

 

Starting with the correlation established by [49] for structural assessment for fully 

plastic conditions, it has been obtained [17], 

 ( )
1

I

I
I

δ

δ
δ

+









=

k

c

P , (31) 

which was verified with the experimental data reported by [50]. 

Similar Eqs. may be written for the participations of specific energies 

corresponding to IIδ  and IIIδ . The total participation becomes, 
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c

P , (32) 

where cIδ , cIIδ  and cIIIδ  are the critical values of Iδ , IIδ and IIIδ . 

The criterion of crack propagation, as a result of Eqs. (9) and (32), is, 

 ( )tPcr
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. (33) 

In the case of linear-elastic behaviour the exponents become 211 1 =+=+ kk . 

The following empirical Eq. has been proposed by [51],  
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,  (34) 

where the exponents were not defined and does not consider the scattering of the 

critical values of CTOD. In conclusion, the Eq. (33) obtained in the paper based on 

a physical and a mathematical support, is beyond the empirical eq. (34).  
 

8. A fracture criterion for mixed – mode loading based on the J – integral 

concept, taking into account the deterioration 

From Eqs. (9) and (10), in the case 1δσ =  ( )0σ   obtains, 

 ( )tP
J

J

J

J

J

J
cr

ccc

=++
III

III

II

II

I

I , (35) 

where Ji (with =i I; II; III) is the J – integral, while Jic is the critical value of the Ji 

– integral. Because J – integral is the rate of change of potential energy with 

respect to an incremental extension of the crack, Eq. (35) is a sum of energies 

ratios at a power equal with unity.  

 

9. Numerical example 

 

The relations deduced in the paper have been verified by experimental data reported 
in literature, as well as by empirical relations reported in literature. This is why now 

these relations can be used for practical calculations. 

 

 
Fig. 8. Crack at angle = 03θ  to the axial direction. 

 

• An elliptical crack in the wall of a steel structure (Fig. 8) is at angle 
= 30θ  to 

the axial direction. The crack features mm 4=a  and mm 8=c . Let us check 

whether the  crack  is  harmless  under stress σ = 60 MPa loading, if it is loaded in 

linear-elastic field. 



 

 

 

 

 

Journal of Engineering Sciences and Innovation, Vol. 6, Issue 1 / 2021 

 

 

 

 

 

 

 

27 

The material of structure is a steel featuring: – ultimate stress, MPa 510σ =u ; – 

yield stress, MPa 390σ =y ; – number of cycles at the knee point, 

( ) 6

0 102σ =N cycles; – exponents: 3=m  taken from Basquin’s law [52], 

 constantσ =Nm

a , (36) 

where aσ  is the normal stress amplitude; N – the number of cycles up to failure. 

There are no residual stresses ( )0=resP   

The wall thickness mm 20=s , 
0.5mMPa 81 =IcK  and 

0.5

II mMPa 148.70 =cK . 

The structure has been before fatigue loaded by 
4105=n cycles with a fully 

reversed normal stress amplitude at which the number of cycles to failure 

cycles108 5

σ =N . 

Solution. Stress σ is projected onto the crack plane ( )τ  and perpendicular to the 

crack plane ( )⊥σ , such as, 

 
MPa 4530cos60θcosσσ 22 ===⊥ ; 

 MPa 98.2530cos30sin60cosθsinθστ === . 

The corresponding stress intensity factors are: 

 
0.5-3

I mMPa 08.61104π211.145πσ === ⊥ aYK ; 

 
0.5-3

II mMPa 27.35104π211.198.25πτ === aYK , 

where one considers YY   and .0656.1
1.1
2
=


=Y  For 5.084 ==ca  results 

211.1=  [53]. 

The total energy participation which corresponds to relationship (17) is ( 0III =K  

and 1δσ = , because )0σ  ,  

 8214.0
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
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The deterioration produced by the before fatigue loading [3; 8], 
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The critical participation (23), 

 
( ) ( ) 8425.01575.011 =−=−= tDtP Tcr . 

Because ( )tPP crT   the loading is subcritical. The crack does not propagate! 
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10. Summary and conclusions 

 

The calculus of engineering structures based on fracture mechanics concepts is 

analyzed. For simultaneous loading with stresses corresponding to two or three 
fracture modes, the empirical relationships found in literature do not take into 

consideration the behavior of the structure’s material, the rate of load, the 

deterioration and the scattering of the mechanical characteristics of the material. 

With the principle of critical energy, general fracture criteria for linear-elastic 
behavior (brittle or quasi-brittle materials) and nonlinear behavior, mixed – mode 

loaded based on the stress intensity factor concept have been derived ((21) and (22)) 

as well as some particular cases, in accordance with the three known fracture modes 
((26) -(28)). 

Based on the crack tip opening displacement concept the general fracture criterion 

(33) have been deduced. The deduced criteria may be used for specimens as well as 
for engineering structures, taking into account the loading rate, the deterioration and 

the scattering of the mechanical characteristics of the material. 

A similar fracture criterion for mixed-mode loading has been obtained starting from 

the J-integral concept (35). 
Residual stresses have an impact, for example, on the welding fracture resistance, 

namely, on its fatigue strength [54÷56]. In the paper the influence of residual stress is 

comprised in the eqs. of critical participations (19) and (21). 
The obtained relationships are verified against empirical relations and experimental 

data reported in literature; they are in good agreement with the experimental data. 

The numerical example shows the novelty and advantage of the relationships 

proposed in the paper. 
In consequence, the eqs. derived in the paper, taking into account the influence of 

deterioration and of residual stress about strength of materials seems to be of high 

degree of generality. 
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