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Abstract. There are presented two methods for optimization of a plug flow tubular 

chemical reactor for o-xylene catalytic oxidation to phthalic anhydride: maximum principle 

and a genetic algorithm. Mathematically, this reactor described by differential equations is 

a system with distributed parameters. The objective consists in the maximization of effluent 

concentration  of phthalic anhydride by a suitable temperature policy along the reactor. 

Despite the fact that genetic algoriths were very seldom applied to optimization of systems 

with distributed parameters, in the present case all the four solutions obtained by the 

genetic algorithm are better than the solution obtained with maximum principle (up to 7.2 

%). Unfortunately, these solutions have mainly theoretical significance, the practical 

implementation being momentanly problematic. 
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1. Introduction 
 

The plug flow chemical reactors are systems with distributed parameteres 

described by models containing differential equations. Usually, in these reactors 

take place several reactions, especially in organic chemical industry. In the total 

production price of a chemical product the cost of raw materials has a weight of 

around 80 % [1].  In this circumstance, a very important optimization problem, 

with a strong economic implications, consists in establish the best control policy 

which maximize the selectivity in the desired product. To solve this kind of 

problems is not easy. Here are presented two methods for optimization of a plug 
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flow tubular chemical reactor for o-xylene catalytic oxidation to phthalic 

anhydride: maximum principle [2–4] and genetic algorithms [5–7]. Also, an useful 

comparison of the performances of these methods is exposed. 

 

2. Plug flow reactor for o-xylene catalytic oxidation to phthalic anhydride 

 

Phthalic anhydride is an important industrial chemical, especially for the large-

scale production of plasticizers for plastics [8]. The main industrial process for 

obtaining of phthalic anhydride consists in  o-xylene oxidation catalyzed by  

vanadium pentoxide (V2O5). In commercial processes, o-xylene is generally 

oxidized in the gas phase with an excess of air over a fixed bed catalysts arranged 

in multitube reactors with up to 10000 tubes [9]. In the intertubular space are 

flowing molten salts as cooling agent. This is recycled through a steam generator in 

order to increase the energy efficiency.  

As a numerical application is considered that the oxidation of o-xylene to phthalic 

anhydride take place in a tubular catalytic reactor with 2500 tubes, each having the 

internal diameter of 0.025 m and the length of 3 m [10, 11]. The heat of reaction is 

removed in the intertubular space by molten salts. The total feed flowrate of the 

reactor is 4684 Nm3/h. The feed mole fraction of o-xylene is 0.0093, and of oxygen 

0.208.  The average pressure in the reactor is 1.75 at and the bulk density of the 

catalyst (V2O5 on α-Al2O3) is 1300 kg/m3. It will be used the next kinetic model of 

o-xylene oxidation [12]: 

C8H10  +  3 O2   1k
  C8H4O3   +  3 H2O 

C8H4O3  +  O2   2k
  8 CO2  +  2 H2O 

C8H10  +  21/2 O2   3k
  8 CO2  +  5 H2O 

The corresponding reaction rates (expressed in kmol/m3h) are: 

vR1 = k1 pA pO ρc  =  k1 P2 yA yO ρc                     (1) 

vR2 = k2 pB pO ρc  =  k2 P2 yB yO ρc                     (2) 

vR3 = k3 pA pO ρc  =  k3 P2 yA yO ρc                     (3) 

where the indices A, B, O indicate o-xylene, phthalic anhydride, and oxygen,  p 

and y are the corresponding partial pressures and mole fractions, ρc  is the bulk 

density of the catalyst, and P is the average total pressure expressed in at. 

The constants of reaction rates are the following expressions: 

                                       k1  = 4.12 ∙ 108  exp (- 13500 / T)                            (4) 

                               k2  = 1.15 ∙ 109  exp (- 15500 / T)                            (5) 

                             k3  = 1.73 ∙ 108  exp (- 14300 / T)                            (6) 

the temperature T being expressed in absolute degrees. 

Taking into account the relation of transformation of molar fractions into molar 

concentrations: 

                                                   yi  =  ci R T / P                          (7) 

where the constant of the ideal gas R has the value 0.082 at∙m3/kmol∙K, the 

expressions of the reaction rates can be rewritten as: 

                     vR1 =  β k1 T cA                          (8) 

https://en.wikipedia.org/wiki/Plasticizer
https://en.wikipedia.org/wiki/Vanadium_pentoxide
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                       vR2 =  β k2 T cB                          (9) 

                       vR3 =  β k3 T cA                           (10) 

were β is the group of constants: 

    β  =  P R ρc yO               (11) 

(oxygen being in excess, the corresponding concentration yO can be considered 

constant). 

 The conservation equations of o-xylene and phthalic anhydride for an 

infinitesimal element of length dl of the plug flow reactor are: 

                                                 31 RR
A vv

dl

dc
u                (12)  

           21 RR
B vv

dl

dc
u                                                (13) 

where u is the gas velocity inside the reactor. 

Defining the dimensionless length z = l / L where L is the total length of the tube 

reactor, and replacing the expressions of reaction rates from eqs (8) – (10) into eqs 

(12) – (13), it obtained: 

                              A
A ckkTC

dz

dc
)( 31                                         (14) 

                              )( 21 BA
B ckckTC

dz

dc
                                         (15) 

were C  is the group of constants β L / u. 

The velocity u is the ratio between volumetric flow rate and the total cross section: 
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where d is the internal diameter of the tube, and Nt is the total number of tubes. 

Replacing with numerical values in the group of constants C gives: 
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This value will be substitutes in eqs (14) – (15). According with the relation (7) 

between molar fractions and molar concentrations, the initial conditions for the first 

order differential equations (14) and (15) are:  

                               At z  =  0  :  cA0  =  3.26 ∙ 10-4   and   cB0  =  0                        (18) 

In the system of the two differential equations (14) and (15) with the initial 

conditions (18) there are three distributed variables: cA(z), cB(z), and T(z) (the last 

by the constants of reaction rates k1 – k3, defined in eqs (4) – (6)). Therefore, is one 

degree of freedom. To obtain a solution of this system is necessary to impose 

values for T(z). An optimization problem consists in the establish of the values for 

T(z) which gives the maximum of cB at the outlet of the reactor, respectively at z = 

1. This problem will be solved by two quite different methods: maximum principle 

(MP) and a genetic algorithm (GA). 
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3. Maximum principle 

Pontryagin's maximum (or minimum) principle is used in optimal control theory to 

find the best possible control for taking a dynamical system from one state to 

another, especially in the presence of constraints for the state or input controls. It 

was formulated in 1956 by the Russian mathematician Lev Pontryagin and his 

students [2].  It has as a special case the Euler–Lagrange equation of the calculus of 

variations.The principle states, informally, that the control Hamiltonian must take 

an extreme value over controls in the set of all permissible controls. Whether the 

extreme value is maximum or minimum depends both on the problem and on the 

sign convention used for defining the Hamiltonian. The normal convention, which 

is the one used in Hamiltonian, leads to a maximum hence maximum principle. 

The initial application of this principle was to the maximization of the terminal 

speed of a rocket. 

The general formulation of a problem that can be solved by MP is: 

- it must be established the optimum value of the functional f : 

                                           dzzzFfOpt
Fz

z



0

)(),( Dx                                      (19) 

- subject to the local restrictions: 

                                    nizzh
dz

xd
i

i ...2,1)(),(  Dx                                 (20) 

- with initial conditions: 

                                                xi  =   xi0      at    z  =  z0                                         (21)  

A necessary, but not sufficient condition for  functional f to be maximum (or 

minimum) consists in selecting of functions D(z) so as to maximize (or minimize) 

the Hamiltonian H: 

                             



n

i

ii zzhzFH
1

)(),()( Dx                                    (22) 

where λi (z) are Lagrange multipliers. 

An usual procedure [11] to solve this problem consists in the use of the gradient of 

Hamiltonian following the next steps: 

1. For the control functions D(z) are given values over the entire domain [z0 - 

zF]; 

2. It is solved (usual numerical) the system of the local restrictions (20) in 

which D(z) has the anterior values, and are obtained the values of x(z). 

3. The Lagrange multipliers  λ(z) are obtained by integration (usual 

numerical) of the differential equations system: 

                           ni
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                     (23) 

- with the boundary conditions: 

                                              λj  =  0    at    z  =  zF                                         (24) 

https://en.wikipedia.org/wiki/Optimal_control
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Lev_Pontryagin
https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation
https://en.wikipedia.org/wiki/Calculus_of_variations
https://en.wikipedia.org/wiki/Calculus_of_variations
https://en.wikipedia.org/wiki/Hamiltonian_%28control_theory%29
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4. The assumptions made at the step 1 are improved using the gradient of     

Hamiltonian: 

                                
D

DD





)(
)()1( )()(

k
kk H

pzz                                  (25) 

where k is the iteration count, and p is the step on gradient direction. 

5. If 0
)(






D

kH
 the procedure is resumed from step 2. 

For optimization of the tubular reactor for o-xylene catalytic oxidation to phthalic 

anhydride using MP the maximization of the effluent concentration of phthalic 

anhydride correspond to maximization of the the functional: 

 

                                       max f   =   max  dz
dz

dcB


1

0

                                       (26) 

If F is the primal of the functional f, it can be observed that this is identical with 

right hand term h2 of the local restriction (15): 

 

                                              2h
dz

dc
F B                                                         (27) 

Using the notation h1 and h2 for the right hand terms of the local restrictions (14) – 

(15) , the applied expressions of eqs (23) are: 
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After substitutions of derivatives in the previous equations and  the substitution: 

                                                    122                                                       (30) 

the eqs (28) –(29) became: 

                                    21131
1 

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
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                                       (31) 
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- with the boundary conditions:   

                                         At   z  =  zF ,   λ1 = 0;   12                                       (33) 

The expression of Hamiltonian is: 

                         22112211 hhhhFH                                (34) 
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and the corresponding gradient is: 
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The procedure of maximizing the Hamiltonian using its gradient has started with 
assuming an integration step Δz = 0.1, and an initial temperature (control variable) of 
633 K (isothermal regime) for all the length steps. At the second step were integrated 
the local restrictions (14) – (15) with corresponding initial conditions (18). The 
integration was made by Runge-Kutta fourth order method with constant step (Matlab 
function ode45 [13]). At the third step were computed the Lagrange multipliers by 
integration of eqs (31) – (32) with the boundary conditions (33). It was used the same 
numerical method, starting at the end of integration domain, and using a negative 
integration step. The initial assumed temperatures were improved using recursive 
relation (25), where the gradient of Hamiltonian was given by eq (35). The value of the 
step on gradient direction p was 10 for the first 10 iterations, and 1 for the next 
iterations.  
The optimal solution, corresponding with the vanish of the gradient of Hamiltonian 
was obtained after 27 iterations. The first iteration (isothermal regime) and the 
optimum solution are given in Table 1. The optimal solution is also represented in 
Figs. 3 and 4, in confrontation with the solutions obtained by GA. It can be 
observed that the increase of effluent concentration  of phthalic anhydride is 
realized by temperature decreasing along the reactor which favorize the selectivity 
in the desired product. In this way is prevented phthalic anhydride subsequent 
oxidation to carbon dioxide and water. In the isothermal regime the concentration 
of phthalic anhydride attains a maximum value of 2.233∙10-4 mol/L at the middle 
length of reactor, and next decreases due to oxidation reaction. 

 
Table 1. Temperatures (K) and concentrations profiles (mol/L)  

for isothermal and optimal regime 
 

 Isothermal regime Optimal regime 

z T cA ∙10-4 cB ∙10-4 T cA ∙10-4 cB ∙10-4 

0 633 3.260 0 626.43 3.260 0 

0.1 633 2.004 1.092 620.20 2.274 0.866 

0.2 63 1.232 1.709 616.97 1.691 1.356 

0.3 633 0.757 2.036 614.96 1.296 1.671 

0.4 633 0.465 2.187 613.60 1.011 1.884 

0.5 633 0.286 2.233 612.62 0.798 2.030 

0.6 633 0.176 2.217 611.90 0.634 2.131 

0.7 633 0.108 2.164 611.36 0.507 2.199 

0.8 633 0.066 2.092 610.95 0.408 2.243 

0.9 633 0.041 2.009 610.62 0.328 2.268 

1 633 0.025 1.929 610.37 0.265 2.278 

 
It can be observed that in optimal regime the conversion of o-xylene is lower 

than in isothermal regime (the outlet concentration of o-xylene for optimal regime 
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is more than 10 times greater than in isothermal regime). Therefore, the increase of 

effluent concentration  of phthalic anhydride with 18% comparing with isothermal 

regime is exclusively due to the increasing of selectivity, and not due to the increse 

of the reference reactant conversion. 

4. Genetic Algorithms 

Appeared and developed in 1970s, GA were recognized as a valuable optimization 

tool after more than a decade, because the progress in computational capacities of 

modern computers. Inspired from the process of natural selection  of biological 

organisms which the evolution theory of Darwin has condensed into the words 

”survival of the fittest”, GA have several features [5,7] which differentiate them 

from other general optimization algorithms and search procedures: 

-the representation of parameters on chromosome-like structure; the parameters are 

either binary encoded or directly stored, for a fast retrieval and processing; 

- the optimal value is searched for a within group of possible solutions, seen as a 

population of points, as opposed to searching on a sequential one-by-one points; 

- the result of the objective function is used to compute a fitness value which is 

assigned to each individual; there is no need to employ derivatives or other 

additional information to the problem; 

- several probabilistic instead of deterministic rules are used to generate new 

solutions; these are expressed as genetic operators which are applied in order to 

create new offspring from the best fitted individuals. 

There are tens of variants of GA [5-7], but all of them have common the principles 

of probabilistic selection of the individuals from a population based of their fitness 

and the generation of new offspring with several genetic operators. 

The GA used here consists in the next steps: 

[1] The codification and generation of initial population: this consists in 40 

chromosomes, each of them having 11 genes (Fig.1). Each gene represent a 

value of temperature thus: the first gene correspond to the temperature in 

the first reactor length step (z = 0 to 0.1), the next gene correspond to the 

temperature in the second reactor length step (z = 0.1 to 0.2), and so on,  up 

to the last eleven reactor length step (z = 0.9 to 1). 

 

 
Fig. 1. Genetic structure of each chromosome. 

 

The generation of the genes values for each chromosome in the domain  [Tmin - 

Tmax] was made with the relation: 

                    Ti  =  Tmin  +  r (Tmax  -  Tmin)        i = 1,2...11                        (36) 

where r is a pseudo-random number generated by computer in the range [0 - 1]. 
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[2] Evaluation of the chromosomes finess: this is the objective function, 

respectively the effluent concentration of phthalic anhydride cB at z = 1. 

This was made in the user fitness function (named roc in Matlab) which 

involves the numerical integration of differential eqs (14) – (15)  by Runge-

Kutta fourth order method with constant step (Matlab function ode45 [13]). 

There was used the same integration method with the procedure in MP, in 

order to make a fair comparison. 

[3] Probabilistic selection of chromosomes for offsprings generation: this 

selection is not deterministic, the probability of selection is proportionally 

with the fitness values. A frequent method used is so called ’roulette 

wheel’[6]. 

[4] Application of genetic operators: the most frequently operators used are 

crossover and mutation. In crossover two selected chromosomes generates 

two or more offsprings. A crossover with two parents and two offsprings 

(childs) with one cutting point is represented in Fig. 2. 

 
Fig. 2. A crossover with two parents and two offsprings (childs) with one cutting point. 

 

By crossover there are not generated new solutions as there were present in  

the initial population. The generation of new solutions are made by 

mutation: the values of some genes in some chromosomes are slightly 

perturbed to new values. The proportion of mutation must be low (usually 

up to 5%) in order not to perturbate the evolutionary character of GA. 

[5] The generation of a new population: in function of fitness values some 

chromosomes are probabilistic retained in the new generation, others are 

replaced with the new offsprings. 

There are different stopping criteria of the GA: a maximum number of 

generation, a maximum computer time, a minimum value of tolerance function (a 

lower bound on the change in the best value of fitness during one generation), etc. 

Here are presented the results of four case studies of optimization of the tubular 

chemical reactor for o-xylene catalytic oxidation to phthalic anhydride using GA. It 

was used for GA the Matlab function ga [13] that calls the function roc for 

chromosomes fitness evaluation. In all four cases were used the same following 

main parameters of GA: size of initial population = 40; population type: double 

vector; crossover fraction = 0.8; selection function: stohastic uniform; mutation 
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function: Gaussian distribution centered on zero; stopping criteria: function 

tolerance = 10-24. The diferences between the four cases were the domain of the 

initial population presented in Table 2. In this table are also indicated the best 

solutions, the comparison with the optimum solution obtained by MP, and the total 

number of generations. It must be noted that because the probabilistic components 

of GA, the total number of generations can be different from each run of ga. 
 

Table 2. The four solutions obtained by GA 

 

Case Domain of initial 

population Tmin - Tmax 

Best solution 

cB at z=1 

Comparison 

with MP 

Number of 

generations 

GA1 600 - 630 2.282∙10-4 + 0.176% 679 

GA2 600 - 650 2.295∙10-4 +0.746% 965 

GA3 600 - 700 2.354∙10-4 +3.336% 972 

GA4 550 - 700 2.442∙10-4 +7.199% 1000 

In the Table 3 and in Figs. 3 and 4 are presented for the four cases the 

corresponding profiles of temperatures and concentrations of phthalic anhydride. 
 

Table 3. The profiles of temperatures and concentrations of phthalic anhydride 

 for cases GA1-GA4 

 

 GA1 GA2 GA3 GA4 

z T cB ∙10-4 T cB ∙10-4 T cB ∙10-4 T cB ∙10-4 

0 630 0 607.43 0 600 0 585.53 0 

0.1 620.05 0.792 600 0.415 600 0.041 558.68 0.096 

0.2 630 1.475 650 1.683 600 0.075 668.41 2.152 

0.3 619.32 1.795 634.84 2.109 600 1.038 652.52 2.486 

0.4 600 1.912 600 2.165 600 1.283 550.53 2.483 

0.5 611.42 2.044 600 2.209 683.56 2.959 567.17 2.476 

0.6 610.29 2.138 600 2.242 612.87 2.654 565.69 2.470 

0.7 609.57 2.203 600 2.266 600 2.568 570.53 2.462 

0.8 609.01 2.245 600 2.282 600 2.490 566.23 2.455 

0.9 608.56 2.270 600 2.291 600 2.420 564.94 2.448 

1 608.23 2.282 600 2.295 600 2.354 563.69 2.442 

 

Despite the fact that all these solutions are superior with the solution obtained 

by MP, the value of these policies are theoretical, not practical. For GA2, GA3 and 

GA4 the temperature profiles correspond to bang-bang controls. Mathematically 

or within a computing context there may be no problems, but the physical 

realization of bang-bang control systems gives rise to several complications 

[14]. 
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Fig. 3. The temperature profiles for the best solutions of MP and GA1-GA4. 

 

 
 

Fig. 4. The concentrations profiles of phthalic anhydride  

for the best solutions of MP and GA1-GA4. 
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An exemplification of GA evolution (for the case GA3) is represented in Fig. 5. 

Because function ga is a minimization procedure, for fitness maximization  was 

considered the negative value of  cB. 

 

 
 

Fig. 5. Exemplification of GA evolution (case GA3). 

Taking into account the above best temperature profiles (established by MP and 

GA), the heat of reaction, and heat transfer from the reactor, it can be obtained 

temperatures profiles at the external wall of the tubes. These profiles will be also 

variable along the tube length. It is very difficult, practical impossible, to realize 

these temperature profiles. The industrial reactor is cooled with molten salts which 

are flowing in the intertubular space, and in these conditions the temperature at the 

external wall of the tubes is, in fact, constant, the internal temperature profile 

having a maximum. This internal temperature profile is not favorable for the 

selectivity in the desired product. An avangard method will be to cool the reactor 

by evaporation (under pressure) a binary mixture with the vaporization curve close 

to the external tube optimal temperature profile.  

5. Conclusions 

It was demonstrated the ability of GA to solve optimal control problems for 

systems with distributed parameters described by models containing differential 

equations. Despite the fact that GA is nowadays a frequently used optimization 

technique, this method was very seldom applied in the field of systems with 

distributed parameters. For this kind of optimization problems was frequently used 

MP, an old and classical method. It is known that in optimal control there are 

present a lot of local optimum solution, much more than in scalar optimization 

problems. The advantage of GA is the fact that are finding a lot of local optimal 
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solution, and sometimes in a fortunate case, the global optimum. Here, GA has 

found four solutions better than the optimum obtained with MP. These solutions 

were obtained by modification of the initial population domain. Other solutions can 

be obtained by modification of other GA parameters. A raffination of the solutions 

obtained both with MP and GA is possible by decreasing of integration step, but it 

was not the aim of these investigations to obtain raffinated solutions. As it was 

already mentioned, it is very difficult to apply optimal control to spatially 

distributed systems. Therefore, the solutions obtained here for optimization of the 

tubular cathalitic  reactor for o-xylene catalytic oxidation to phthalic anhydride, a 

very important industrial and economic application, are useful mainly from 

theoretical point of view, than practical. But, in the future, due to technical 

evolution, practical application must not be excluded. For time distributed systems, 

such as temperature control in a well mixed batch reactor, the implementation of 

optimal policies do not lift up no problems. Due to the actual and future 

performances of control devices, this is also true for bang-bang control. 
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