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Abstract. Over the past decade a great attention has been paid to the modeling and 

simulation of making objects invisible or deaf to noise. The recent results have enlightened 

the mode of control and handling the invisibility and cloaking to noise using the 

metamaterials engineered at the subwavelength scale in order to interact with acoustic field 

in a way that traditional materials do not. The acoustic invisibility is based on the property 

of acoustic equations to be invariant under a spatial compression that means a manipulation 

of the material parameters. In this paper, the sound invisibility performance is discussed for 

spherical cloaks. The original domain consists of an alternation of layers made from 

piezoelectric ceramics and epoxy resin, following a triadic Cantor sequence. The spatial 

compression, obtained by applying the concave-down transformation, leads to a 

metamaterial layer with an inhomogeneous and anisotropic distribution of the parameters. 
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1 Introduction 

 

The idea of invisibility reminds us the Greek legend of Perseus versus Medusa to 

Well's Invisible Man and continue to fascinated us. Newton saw the colour as a 

physical problem, and Goethe as a mechanics of human vision and information. 

The acoustic invisibility refers to the “melting” of the sound or its disappearance, 

with benefits to many applications. The acoustic equation is invariant under a 

coordinate transformation and this is the fundamental idea to design the acoustic 

metamaterials who does not hear the sound [1-6]. In other world, the acoustic 

cloaking is a coating region in which the external noise is hidden. We can imagine 

a region invisible to sound as a box where the sound cannot penetrate. 

                                                           
* Correspondence address: veturiachiroiuilie@gmail.com 

http://doi.org/10.56958/jesi.2018.3.2.81

http://www.jesi.astr.ro/


 

 

 

 

 

Brisan Cornel and al./ On the acustic invisibility 

 

82 

Cummers et al. [2] studied a spherical shell that cancels the propagation of noise 

from an arbitrary source situated within the shell. The simulation confirmed that 

the waves are bent excluded from the shell. Cummer and Schurig [3] demonstrate 

that 3D acoustic equations in a fluid are identical as form to Maxwell equations 

with the same type of boundary conditions. Recent works show that acoustic 

metamaterials could cloak regions of space, making them invisible to sound [7-15]. 

The principle of a cloak region which is invisible or transparent to waves was 

discussed in [16-19].  

As an alternative, the sonic composites exhibit the full band-gaps where the sound 

is not allowed to propagate due to complete reflections [20-27]. Another alternative 

is the antinoise when the acoustic field is mimicked and reduced by using another 

source [28- 32]. This is in contrast to 3D electromagnetic cloak [33] for which the 

analysis does not need reasons to show that the scattering is canceled [34].  This is 

due to the acoustic waves that involve solutions of the Helmholtz equation 

expressed by spherical Bessel functions that do not all tend to zero as their 

argument approaches zero. By using this result, a class of rectangular cylindrical 

devices for noise shielding was investigated [35]. The correspondence between the 

electromagnetic and acoustic cloaks is analyzed by exploiting the nature of the 

partial differential equations  which are reducing to Helmholtz equations which are 

the key for sound invisibility [21-28].  

In this paper, we apply the concave-down transformation to obtain a spherical 

cloak which surrounds a noisy source (Fig. 1). The original domain is a sphere of 

radius 2R  consisting of layers of piezoelectric ceramics and epoxy resin following 

a triadic Cantor sequence. After the transformation, the cloak is a region
1r R  

filled with air and containing the noisy source and the layer 1 2R r R   is filled by 

a metamaterial.  
 

 
 

Fig. 1. The spherical cloak surrounding a noisy machine. 
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2. The coordinate transformation 

 

The idea of the invisibility is related to the acoustic path -1dc s , 1 /c− =   , where 

  is the fluid density and   the compression modulus of the fluid in the region 

where the sound travels [4, 5, 36-38].  

The acoustic equation of the pressure waves in the initial domain of a bounded 

fluid region 3R  is 

 

2
1( ) 0p p− 

    + =
 , (1) 

where p  is the pressure,   is the tensor of the fluid density,  is the compression 

modulus of the fluid, and  is the wave frequency. 

The coordinate transformation changes the coordinate system ( , , )x y z    of the 

compressed space to the original coordinate system ( , , )x y z  being characterized by 

the Jacobian 
xxJ   
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The associated metric tensor is given by [39, 40] 

T

det( )

xx xx

xx

J J
T

J

 



= .                                              (3) 

By applying (2), the homogeneous and isotropic material from the original region 

is replaced by another anisotropic and inhomogeneous material whose properties 

are expressed by  
T 1 det( )x x x x x xJ J J− −

  
 =   ,  det( )x xJ 

 =  ,                              (4) 

or 
T

det( )

xx x x
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J J

J

 




 = , 

det( )xxJ 


 = ,                                     (5) 

where   is a second order tensor. Multiplying (1) by a test function   and 

integrating by parts, we obtain [4, 5] 

( ) ( )1 2 1

( , , ) ( , , ) d d 0x y z x y z p V p V− −



−    +    =  .                       (6) 

By applying the coordinate transformation ( , , ) ( , , )x y z x y z  →  to (6), we obtain 

from (2) 

( ) ( )T 1 T 2 1

( , , ) ( , , ) det( )d det( ) d 0x x x y z x x x y z xx xxJ J p J V J p V− −

      



 −    +    =  ,     (7) 
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or 

( )
1 T

1
T

2
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x y z x y z

x x x x

J J
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  .    (8) 

The coordinate transformations are concave-up or concave-down depending on the 

sign of the second order derivative of the transformation function. The concave-

down transformation compresses a sphere of radius 
2R  in   into a shell 

1 2R r R   in the compressed space    as 

 

1

2 1

2 1

( ) 1
R R

r
R R r

+

 

  
 = −   −    , (9) 

where   the degree of the nonlinearity of the transformation. For 0→ , we obtain 

the linear case 

 

2 1

2 1

Ln( / )
( )

Ln( / )

R r R
r

R R


 =

. (10) 

All curves (9) have negative second order derivative with respect to the physical 

space r . This class of transformations is the concave-down transformation. The 

transformation function (9) depends on the radial component r  in the spherical 

coordinate system ( , , )r     [41]. 

     The concave-up nonlinear transformation compresses a sphere of the radius 
2R  

in the original space   into a shell region 
1 2R r R   in the compressed space   

as 

2 1

2 1 1

( ) 1
R R r

r
R R R




 

  
  = − 
 −   

.                               (11) 

For 0→ ,we obtain (10). This class of transformations is the concave-up 

transformation because (11) has positive second order derivatives. The cloak 

properties in the both transformed coordinates are given by (4) and (5) 

where /r rJ r r
=   . 

The equations of propagation of the elastic waves with a time harmonic 

dependence are written as [2, 6] 

                                                      
2: 0C u u   +  = ,                                    (12) 

where   is the scalar density of an isotropic heterogeneous elastic medium, C  is 

the fourth-order elasticity tensor,   is the wave angular frequency, and 

1 2 3 1 2 3( , , , ) ( , , )exp( i )u x x x t u x x x t= −   is the displacement vector. Under a change of 

coordinates ( , , )x y z    to ( , , )x y z  with 
T( ) ( )x xu x J u x−
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
,  we 

obtain from (12) 
2( ) : :C S u u D u           +  +   =  ,                               (13) 
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which preserves the symmetry of the new elasticity tensor C S + [5]. Equation 

(13) contains two third-order symmetric tensors S   and D with
pqr qrpD S =  and a 

second-order tensor
pq
 . 

 

3. The spherical acoustic cloak 

 

The initial domain is made from concentric homogeneous and isotropic layers 

situated in the sphere  of radius 
2R . After the coordinate transformation, an 

equivalent compressed inhomogeneous anisotropic material described by (3) is 

obtained.  

The sphere   consists of an alternation of layers made from piezoelectric ceramics 

and epoxy resin, following a triadic Cantor sequence up to 31 elements (Fig. 2). 

The dashed regions are occupied by piezoelectric ceramics and the white regions 

are occupied by epoxy-resins.  

The experimental and theoretical evidence of extremely low thresholds for the 

subharmonic generation of ultrasonic waves in artificial piezoelectric plates with 

Cantor-like structure as compared to the corresponding homogeneous and 

periodical plates were performed in [43-46]. A nonlinear interaction between the 

extended-vibration (phonon) and the localized-mode (fracton) regimes explained 

this behavior. The equations which govern the subharmonic ultrasonic wave 

phenomenon were solved by using the cnoidal method, which employed the 

cnoidal wave as the fundamental basis function [37, 47, 48]. 

The quasistatic motion equations and constitutive laws of initial material are 

                                  
,i ij ju t = ,                                                                (14) 

                                 , 0i iD = ,  , 0i e iE +  = ,                                                      (15) 

              2p p p

ij kk ij ij k k ijt e E=    +   −  ,                                         (16) 

     2e e

ij kk ij ijt =    +   ,                                                 (17) 

p p

i i i kkD E e=  −  ,                                                     (18) 

                                         
, ,

1
( )

2
ij i j j iu u = + .                                                     (19) 

Indices p  and e denote the piezoelectric (PZ) and non-piezoelectric (ER) 

materials, respectively,   is the density, 
iu , 1,2,3i = , are the components of the 

displacement vector, 
ijt , 1,2,3i j= = , are the components of the stress tensor,

iD , 

1,2,3i = , are the components of the electric induction vector, 
iE , 1,2,3i = , are the 

components of the electric field and 
e  is the electric potential, 

ij , 1,2,3i j= = , 
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are the components of the strain tensor,  ,   are the Lamé constants, p is the 

dielectric constant and p

ie ( 3 2 1

p p pe e e= = ) are the piezoelectricity coefficients. The 

coordinate 
1x  is directed along the radial direction, 

3x  is directed along the 

circumferential direction, while 
2x  is located within the layer. 

 

 
 

Fig. 2. The Cantor-like structure [5]. 

 

The solution of (1-14) is the theta function   which verifies the equation [5, 47] 

1 1 1 4

, , 0( ) 0p e p e

− − −     −   = ,                                      (20) 

where 
1/ 2E− = , E  is the effective Young modulus of the composite, 

4 2

0 0/h D =   , 
0D  is the flexural rigidity of the plate,   its effective density, h  its 

thickness, 
1− =   and  the frequency. Eq. (20) can be factorized as a Helmholtz 

operator and an anti-Helmholtz operator  

2 2 2 2

0 0( )(( ) 0 +   −   = ,                                               (21) 

where for simplicity 1 =  = . We write the Helmholtz equation in the coordinate 

system 
1 2 3( , , )x x x  as 

1 2 1( ) 0− −    +   = .                                      (22) 
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Let us apply the concave-down transformation (9) to (20), which compresses the 

original domain   occupied by a sphere of radius 
2R  into a shell region 

1 2R r R   in the compressed space   , characterized by 

1 T 1

, ,( ) ( ) / det( )p e rr p r rr rrr J r J J− −

  
  =  , 1 T 1( ) ( ) / det( )rr rr rrr J r J J− −

  
  =  , 

                                                     /rrJ r r
=   ,                                               (23) 

In the new coordinates, the transformed equation (20) now reads as 

1 1 1 4

, 33 , 33 0( ) 0p e p e

− − −          −   = ,                                  (24) 

where 1

,p e

−  is the upper diagonal part of the inverse of   and 
1

33

−  is the third 

diagonal entry of 1−  [40]. The cloak has the inner radius 
1 0.5mR = and outer 

radius
2 1mR = . The concave-down transformation presents an overlapping for all 

curves for 0.1  , which means the same results in applications. The effect of   

on the amplitude of displacements inside the cloak 
1r R  is shown in Fig. 3. When 

  increases, the amplitude also increases due to the fact that more energy is guided 

towards the inner boundary 
1r R= , which in turn makes the cloaked object more 

acoustically visible to external waves. For  = 0.1 and 0.4, the acoustically 

invisibility is good. The effect of   on the amplitude of displacements in the shell 

region 
1 2R r R   is shown in Fig. 4. When   increases, the amplitude also 

increases in the shell region of the cloak. 

 

 
 

Fig. 3. Variation of the displacement amplitude with respect to   in the region 
1r R . 
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Fig. 4. Variation of the displacement amplitude  

with respect to  in the region 
1 2R r R  . 

 

The absence of the scattering of waves generated by an external source outside the 

cloak 
1 2R r R   is observed in Fig. 5 for  = 0.1. The waves are smoothly bent 

around the central region inside the cloak. The results show that the wave field 

inside the cloak, i.e. the inner region of radius
1R  which surrounds the noisy 

machine, is completely isolated from the region situated outside the cloak. The 

waves generated by a noisy source are smoothly confined inside the inner region of 

the cloak, and the sound invisibility detected from the observer is proportional to . 

The inner region is acoustically isolated and the sound is not detectable by an 

exterior observer. The domain  
1r R  is an acoustic invisible domain for exterior 

observers. The waves generated by the exterior source outside the cloak do not 

interact with the interior field of waves. Any interaction between the internal and 

external wave fields is cancelled out by the presence of the shell region 

1 2R r R  filled with metamaterial. 

The things change if β grows. For β = 4 for example, the waves generated by the 

noisy machine interact with the waves generated by an exterior source outside the 

cloak, and waves are complete visible in the cloak 
1 2R r R   (Fig.7). 

Conclusions are that for the concave-down spherical cloaks, smaller values for 

  lead to a smaller disturbance in the acoustic fields in both the inner and the 

outer spaces 
2r R and 

2r R , respectively, and higher values for   lead to a 

significant disturbance in the acoustic fields in both the inner and the outer 

spaces. 



 

 

 

 

 

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 2 / 2018 

 

89 

 

 
Fig. 5. The wave fields inside and outside the cloak for  = 0.1. 

 

 
Fig. 6. The wave fields inside and outside the cloak for  = 0.2. 

 

 
Fig.7. The wave fields inside and outside the cloak for  = 4. 
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4. Conclusions 

 

In this paper, we shown the feasibility of designing of the “sound invisibility 

cloaks” using a layered metamaterial obtained by a coordinate concave-down 

transformation. The original domain consists of an alternation of concentric layers 

made from piezoelectric ceramics and epoxy resin, following a triadic Cantor 

sequence. After transformation, an equivalent domain with an inhomogeneous and 

anisotropic distribution of the material parameters are obtained. The simulations 

show that the noise generated by a noisy machine it transparent, or nearly 

transparent to acoustic waves in the cloak. The same principle is used in acoustics 

as in hiding objects from electromagnetic waves, i.e. the property of Helmholtz 

wave equations to be invariant under a coordinate transformation which can be 

interpreted as a spatial compression. The example of the spherical acoustic cloak 

looks at sound scattering from a noisy machine and an external noisy source. The 

waves generated by both, internal and external sources, do not interact between 

them, and in the cloak is silence, nothing is heard. The versatility of coordinate 

transformations is useful for bridging the wave phenomena ranging from 

electromagnetic, elastic, water, to acoustic waves, to the invisibility of such waves 

by cloaks made from metamaterials. These waves are all governed by Helmholtz 

scalar partial differential equation invariant under coordinate transformations. 
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