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Abstract: This paper is dedicated to the presentation of some qualities of a meshfree 
method – Element-Free Galerkin Method (EFGM) – which is few known and fewer used in 
Romania. In spite of a large using of the Finite Element Method (FEM), new numerical 
methods appeared, among these the Element-Free Galerkin Method (EFGM) is one. This 
method belongs to the meshfree methods, which is based on an approximation method 
named mooving least square method (MLSM). This paper presents in a synthetically way 
the base principle of EFGM. Some results of our researching work are also presented, 
which demonstrate some basic advantages of the EFGM. A simple problem of structure 
analysis is presented but the results are obtained by three methods: theoretical, FEM and 
EFGM. The results are a pleading and a model for using the EFGM. The answer of the title 
question is going to be given by any user of the EFGM.  
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1. Introduction 

 
Not many years ago, rather recently, the interest of the specialists was focused on 
the development of the next generation of computational methods — meshfree and 
meshless methods, which are expected to be superior to the conventional grid-
based FEM for many circumstances and even applications. 
The key idea of the meshfree methods is to provide accurate and stable numerical 
solutions for integral equations or partial differential equations (PDEs) with all 
kinds of possible boundary conditions with a set of arbitrarily distributed nodes (or 
particles) without using any mesh that provides the connectivity of these nodes or 
particles. [2] A Meshfree method is a method used to establish system algebraic 
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equations for the whole problem domain without the use of a predefined mesh for 
the domain discretization [2].  
Making a difference between interpolation and approximation, we must notice that 
by interpolation procedures, the exact values of the approximated function at the 
nodes are reproduced, as long as by approximation procedures, the exact values of 
the approximated function at the nodes are not reproduced [2].  
The formulation of an equation set, by one or other numerical method can be made 
in a strong or weak form. In a strong-form formulation, the approximate unknown 
function (e.g. u, v etc.) should have enough degree of consistency, so that it is 
differentiable up to the order of the partial differential equations.  
Obtaining the exact solution, by a strong-form formulation of an equation system is 
ideal, but often very difficult. In a weak-form formulation, the approximate 
unknown function (e.g. u, v etc.) has a weaker consistency, by introducing an 
integral operation to the system equations based on a mathematical or physical 
principle.  As the weak-form formulation is based on global or local domain, we 
must distinguish between global or local weak-forms. From this point of view, the 
EFG method (EFGM) is a global weak-form method. 
 
2. Fundamentals of the EFGM 
 
The Element-free Galerkin method uses the moving least-squares approximation of 
a function )(xu  representing a field variable. The approximated value of )(xu will 

be denoted by )(xuh  defined by expression: 

1

( ) ( ) ( )
n
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i i

i

u x H x b x


                                        (1) 

In a matrix form, relation (1) is written: 
T( ) H (x)b(x)hu x                                                  (2) 

where n  is the order of the completeness in this approximation, the monomial )(xH i  are 

basis functions and )(xbi  are the coefficients of the approximation function.  

 

Fig. 1. Nodal parameters iu  and approximate function )( i
h xu . 
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As the Figure 1 shows, in the moving least-squares approximation it is a difference 
between nodal parameter and its approximated value for a node i .  The coefficients )(xbi  

for a point x depend on the sampling points xI which are selected by a weighting function 

aw (x-xI). A weighting function is defined on a compact support defined by a sub-domain. 

Each sub-domain I is associated with a node I . Often a such sub-domain is a circle or a 

ball (3D space), like in the Figure 2. 
The moving least-squares technique is based on minimizing the weighted L2-Norm 
( J ) defined by the relation (3) or (4); NP  is the number of nodes (points) within 
the support domain where aw (x-xI) 0 . 

 
Fig. 2. A mesh-free discretization. 
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In the relations (3) and (4) the following notations were used: 
uT = ( NPuuu ,...,, 21 )                                          (5) 
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 )x(xw),...,x(xwdiagW NPa1aa                             (8) 

The coefficients b result from equation: 

0B(x)u(x)b(x)M
b

J [n] 



                                   (9) 

where, 

(x)HWH(x)M a
T[n]                                        (10) 

(x)WHB(x) a
T                                         (11) 

resulting: 

(x)B(x)uMb(x)
1[n]                                       (12) 
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Using the solution of the equations (1), (10), (11) and (12) the EFG approximation 
is obtained: 





NP

I

II
h uxxu

1

)()(                                       (13) 

)(xI  are shape functions having the expressions: 

(x)B(x)(x)MH(x)Ψ
1[n]T

I


                                 (14) 
The choice of the weight function can be theoretically arbitrary as long as these 
meet some conditions. Synthetically, the most important conditions are: to be greater zero 
within the support domain; to be zero outside the support domain; to be monotonically 
decreasing from the point of interest; to be enough smooth, especially on the boundary. 
 

 
Fig. 3. Weight functions. 

 
The most used weight functions are: the cubic and the quartic spline functions. In the 
Figure 3, a graphical representation of these weight functions is presented.  
 
The EFGM matrix equation system 
 
The moving least-squares approximation lacks the Kronecker delta function 
property.  A weak-form formulation, including all the loads (on domain and on 
boundaries) is:  

      
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TTT
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dΓtδubdΩδudΩLuDLuδ    
u

T

Γ

1
δ u u α u u dΓ

2
      (15) 

In the relation (15), the used notations, for a 2D problem, have the following forms 

and meaning:  Tu u v = displacement vector;   yx
T bbb   = the body force 

vector;  nσt  = the prescribed traction on the boundary ( t );  n = the vector of 
unit outward normal at a point on boundary; uu  = the prescribed displacement 
on the boundary ( u );   k ...21 = is a diagonal matrix of penalty 

factors, where 2k  for 2D and 3k for 3D; the penalty factors i  can be 
function of coordinates (different from each other), but they have to be given; 
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practically, a constant large positive number is used; 

D = 
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= differential operator.    

Considering the fundamentals of the EFG method presented above, by their introducing in 
the relation (15), the following matrix equation is obtained, 

   FFUKK                                             (16) 

where K is the global penalty stiffness matrix and F is an additional force vector. In the 
case of using of the Lagrange multiplier method for essential boundary conditions, the 
relation (15) will be re-written and penalty factors ia  will be changed with Lagrange 

multiplayers  , as it is shown in the relation (17). 
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By a lot of mathematical transformation, by considering the relations of the EFG 
fundamentals, finally the following matrix equation is obtained, 
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where K  is the global stiffness matrix, G  is the global stiffness matrix resulting 
from boundary conditions, U is the vector of the nodal parameters of the 
displacements,   is a vector collecting the nodal Lagrange multipliers for all field 
nodes on the boundaries, F  is the global force vector and Q  is the global vector of 
the forces resulting from the prescribed displacement on the boundary. 
The equations (16) and (18) represent the final discretized system equations for the 
EFG method, using penalty method and Lagrange multiplier method, respectively. 
Solving of the equation (16) or (18) nodal parameters of the displacements are 

obtained; then, the nodal displacements hu  are obtained. 
 
4. Illustrative example 
 
The comparative analysis of the obtained results by FEM and by EFGM is 
performed for a simple problem which also has a theoretical solution. This simple 
problem consists in bending of a cantilever beam loaded at the end [5]. The 
calculus model of this problem is presented in Figures 4. 
The calculus model is presented in the Figure 4, where NP 2000 ; ml 60.0 ; 

PaE 11102  ; PaG 111076923.0  ; 30.0 ; mch 06.02  ; mc 03.0 ;  mb 01.0 . 
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Fig. 4. Calculus model of the considered problem. 

 
 
4.1. Analitical solution 
 
The displacements u  and v  in any point of the beam is calculated with the 
relations (Timoshenko, Theory of Elasticity, page. 38): 
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Considering only the bending moment, the equation of deflection curve has the 
following form (Timoshenko, Theory of Elasticity, page. 38): 

3 2 3
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( ) ( )

6 2 3
M

y

Px Pl x Pl
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                                (21) 
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                                       (22) 

This relation is well known from elementary books on the strength of materials. By 
considering the influence of the shear forces the equation of the deflection curve 
becomes (Timoshenko, Theory of Elasticity, page. 39): 
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Using the relations (22) and (24) the following values of maximum deflections of 

the beam are obtained: mUY M 0040.0max  ; max 0.004039M TUY m   
 
4.2. Numerical solutions 
 
The numerical solutions, by FEM and by EFGM, were performed for five versions 
of discretization; these versions are presented bellow, in the Figure 5. Each of 
above tests has the following characteristics of the mesh: 
 Test-1: FE dimension, 15x15 mm, having 4x40 = 160 FE, with 205 nodes;  
 Test-2: FE dimension, 10x10 mm, having 6x60 = 360 FE, with 427 nodes; 
 Test-3: FE dimension, 5x5 mm, having 12x120 = 1440 FE, with 1573 nodes; 
 Test-4: FE dimension, 3.5x3.5 mm, having 17x172 = 2924 FE, with 3114 nodes; 
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 Test-5: FE dimension, 3x3 mm, having 20x200 = 4000 EF, with 4221 nodes. 
The used finite element, both in FE analysis and EFG analysis, was the SHELL 
element with 4 nodes, in a plane-stress state.  
The results are synthetically presented in the Table 1 and Table 2, for those two 
cases: only bending moment, respectively bending moment and shear force.  
The Figures 6 and 7 present, in a graphic form, the evolution, according to the 
number of FE, of the maximum displacement UY  and the errors of those two 
numerical method.  
In the Figures 8 and 9, the influence of the considering of the shear forces is 
illustrated by graphical representation of the calculus errors of those two numerical 
method versus the number of finite elements. 
 

 
Test-1 

 
Test-2 

 
Test-3 

 
Test-4 

 
Test-5 

Fig. 5. Discretization versions of the structure. 
 

Table 1. Maximum displacements under bending moment. 

No. of 
F.E. 

Analytical 
solution 

FEM EFGM 

UY [m] UY [m] Err. [%] UY [m] Err. [%] 

Test-1 

0.004000 

0,00428 7,00 0,003994 -0,15 

Test-2 0,00414 3,50 0,004013 0,33 

Test-3 0,00406 1,50 0,004026 0,65 

Test-4 0,00405 1,25 0,004029 0,72 

Test-5 0,00404 1,00 0,004029 0,72 
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Table 2. Maximum displacements under bending moment and shear force. 

No. of 
F.E. 

Analytical 
solution 

FEM EFGM 

UY [m] UY [m] Err. [%] UY [m] Err. [%] 

Test-1 

0.004039 

0,00429 6,21 0,003994 -1,11 

Test-2 0,00415 2,75 0,004013 -0,64 

Test-3 0,00407 0,77 0,004025 -0,35 

Test-4 0,00406 0,52 0,004028 -0,27 

Test-5 0,00406 0,52 0,004029 -0,25 

 

 
Fig. 6. Comparative graphical presentation of the maximum displacement. 

 

 
Fig. 7. Comparative graphical presentation of the errors. 
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Fig. 8. The influence of the shear force  T  upon maxUY  by FEM. 

 
As the stress calculus is concerned very interesting observations can be made. 
Using the version of Test-3 a comparison between those three methods were made 
for the elements placed in the middle of the beam length, as the Figure 10 presents. 
The SX and SXY stresses values and their distributions were studied. 
 

 
Fig. 9. The influence of the shear force  T  upon maxUY  by EFGM. 

 
The theoretical values of the stresses were calculated starting from relations (19) 
and (20) using Hooke’s generalized law for the case of the plane stress state: 
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The values of SX and SXY stresses were calculated in the middle point of the 
selected elements (Fig. 10). 
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Fig. 10. Selected elements for graphical representation of the SX and SXY stresses. 

 
Graphical representations of the SX and SXY stresses in the selected cross section 
(middle beam length) are presented in the Figures 11 and 12. 
 

 
Fig. 11. The values of SX stresses on the selected elements calculated by those three methods. 

 

 
Fig. 12. The values of SXY stresses on the selected elements calculated by those three methods. 
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Fig. 13. Errors towards theoretical values for SX stresses. 

 

 
Fig. 14. Errors towards theoretical values for SXY stresses. 

 
5. Conclusion 

 
The study presented in this paper shows a part of our researching, which has and 
will have the aim to bring to the attention of specialists the using of this meshfree 
method – EFGM.  
So, we presented in a comparative way, the calculus results because the best 
arguments for YES or NOT for a numerical method consist in quantitative 
determinations. 
Unfortunately, by lacking enough space, we have referred only some aspects 
regarding those two numerical methods: FEM and EFGM. These aspects are the 
number of the finite elements, maximum displacements and the influence of the 
shear force upon calculus results. 
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Analyzing the quantitative values (Tables 1 and 2) and the graphical 
representations (Figures 6...9) some very important conclusions can be formulated. 
So, the EFGM is more accurate, comparatively with FEM, in both cases: taking or 
not considering the influence of the shear forces.  
The EFGM has a high convergence rate being more accurate than FEM.  
By comparing those three methods (analytical method, FEM and EFGM) we can 
see that the EFGM is less sensitive with respect to the fine mesh (Figures 6 and 7).  
Just in the case of the fewest elements (Test-1) the calculus error of the maxUY  is 
under 1.50% using EFGM, as long as using FEM (Ansys code) the same error is 
over 6% (Fig. 7). 
The convergence to the exact solution (analytical solution) is made from opposite 
directions (Figures 6 and 7) because of their approximation types: interpolation 
(FEM) and approximation (EFGM).  
The influence of the shear force is a little one, but in some circumstances could 
have a significative influence and this is the reasons of our research.  
Beginning with the Test-3, the errors, produced by considering of the shear force, 
go under 2% (Fig. 8). We could say that the EFGM is an effective method and it is 
found to be superior to FEM.  
Similar conclusions can also be drawn on stresses SX and SXY (Figures 11 and 
12); the values obtained by EFGM are closer to the theoretical values for the same 
point. This observation is valid for both SX and SXY stresses, for any point of the 
beam.  
The errors along selected cross section presented in the Figures 13 and 14 are 
referring to the SX stress and SXY stress respectively; they are rather inadmissible, 
but they occur on a coarse mesh. Just in such conditions, the errors of the EFGM 
are under FEM errors. So, EFGM is more accurate than FEM. 
This conclusion is based on many other arguments not presented here.  
Some disadvantages, also not presented here, are to be going to be overpassed. 
We consider that a right answer to the title question must be formulated by each 
user after studying and using of this meshfree method – EFGM. 
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