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Abstract. Cyclic systems have double modes with identical natural frequencies. Using the 
theory of circulants, independent eigenvectors can be exactly determined without slightly 
perturbing the eigenvalues. The paper presents the contribution of the double modes to the 
frequency response functions (FRFs) of cyclic systems with proportional damping. The 
mode indicator functions UMIF and CoMIF, based on the left singular vectors of a matrix 
encompassing all available FRFs as columns, are applied to simulated noise-free data. It is 
shown that they can reveal double modes even using FRFs from single point excitation. 
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1. Introduction 

 
Axisymmetric and cyclically periodic structures possess pairs of modes with 
identical natural frequencies (repeated roots, degenerate modes). Double modes are 
orthogonal, having identical modal shapes but rotated relatively. Any combination 
of such two modes is also a mode shape. 
Cyclically periodic structures are described by circulant matrices. The eigenvalues 
of a circulant matrix can be exactly determined even if they are double. The 
eigenvectors of all circulant matrices of the same order are the same. 
Structures with small deviations from cyclic symmetry possess double modes with 
split natural frequencies. They are coupled by the inherent structural damping and 
generally cannot be detected in a measured response function where the peaks are 
merged in the neighbourhood of a resonance.  It is difficult to estimate the system 
order, i.e. the number of dominant modes in a given frequency range. One has to 
use data from more than one reference. 
In order to obtain independent eigenvectors it is customary to desymmetrize a 
cyclic system by introducing an imperfection in the cyclic symmetry. The structure 
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is slightly perturbed by adding (or removing) a small mass (or stiffness) at a given 
location. In such quasi-periodic structures, double modes are split into pairs of 
closed modes, usually with merged peaks in the response curves but with distinct 
peaks in the mode indicator functions. 

 
2. Lumped parameter cyclic system  
 
Consider the system shown in Fig. 1 [1]. It consists of a set of N identical light 
cantilevers, each of stiffness , and carrying a mass  at their ends. The masses 
are coupled by springs of stiffness . The radial cantilevers are uniformly clamped 
around a circular stationary rigid hub.  
The dynamics of the system is defined by the transverse displacements  

 of the lumped masses.  
Note that the numbering is clockwise and starts with the upper mass.  
Four systems will be considered in the following: a) the Undamped Tuned System, 
b) the Undamped Mass-Mistuned System, with a single lumped mass added to an 
existing mass, c) the Damped Tuned System, with proportional damping added to 
the cantilevers and the coupling springs, to simulate realistic frequency response 
curves, and d) the Damped Mistuned System, with added mass and proportional 
damping. 

 
2.1. Undamped tuned system  

 
The equation of motion for a typical mass is 
  (1) 
or 
  (1.a) 
 

 
Fig. 1. Lumped parameter cyclic system. 
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The cyclic boundary conditions are 
 ,       (or  ). (2) 
In matrix form, the equations of free motion can be written 
  (3) 
where the diagonal mass matrix is 
  (4) 
and the real symmetric stiffness matrix is 

   (5) 

The vector of displacements is 
 . (6) 
The eigenvalues  and the eigenvectors are solutions of 
  (7) 
where 
 =  (8) 
is a real symmetric circulant matrix [2] of the form  

 , (9) 

in which each row is a cyclic shift of the row above it. 
Note that when working with circulant matrices it is convenient to number entries 
from 0 to N-1 rather than from 1 to N. 
Every circulant matrix [C] of order N has eigenvectors [3] 

=      

  (10) 
where 
  (11) 
is the angle between two neighbouring masses,  
  (12) 
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are complex “roots of unity” and 
 =  (13) 
is the primitive N-th root of unity. 
The corresponding eigenvalues are 
 . (14) 
For N even, the zeroth eigenvalue  and the so-called Nyquist eigenvalue  
are always real. For real symmetric circulant matrices, the remaining eigenvalues 
are real and come in pairs symmetric about  .  
For the system shown in Fig.1 the eigenvalues are 
 , (15) 
 ,  . (16) 
The eigenvectors belonging to double eigenvalues are complex conjugate. Because 
any linear combination of the eigenvectors belonging to a repeated eigenvalue is 
also an eigenvector, the real and imaginary parts of the eigenvectors are themselves 
eigenvectors, and are usually termed as the “cosine” and “sine” modes.  
The antisymmetric cosine mode corresponds to the first eigenvalue in a pair, and 
the symmetric sine mode corresponds to the second eigenvalue. 
Instead of ordering the eigenvalues according to the index p 
  (17) 
it is common practice to number them in increasing magnitude order as 
  (18) 
Sometimes it is convenient to re-index the modes of vibration and the elements of 
modal vectors (masses m) from 1 to N (Fig. 1) [2]. 
  

    (19) 

  

 
Numerical example 
 
Consider the system from Fig.1 with the following numerical parameters 
  ,    ,  , . (20) 
The eigenvalues ordered as in (17) are 
 ,      (21) 
i.e. 

   ,   ,   , 
  (22) 
 ,  ,  . 
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The eigenfrequencies are showed in the upper plot of Fig.2. In the lower plot they 
are ordered as in (18).  
The mode shapes of the undamped system are shown in Fig.3 and Table 1. The 
deflection amplitudes are defined by the real cosine and sine modes [4]: 

for antisymmetric modes 

  ,       (23) 

  ,    (24) 
for symmetric modes 

 ,    n  (25) 

 
Fig. 2. The undamped natural frequencies. 

By analogy with the mode shapes of bladed discs [5], it is possible to define “nodal 
diameters”, i.e. lines connecting opposite points with zero displacement. 
Except when  and , there are pairs of mode shapes with the 
same shape but rotated relatively. The mode shape corresponding to the second of 
each pair of frequencies is rotated by an angle , where D is the number of  
“nodal diameters”.  Modes 2 and 3 are “1D” modes  in which the nodal 
diameter is rotated by 900. Modes 4 and 5 are “2D” modes , whose nodal 
diameters are rotated by 450. Modes 6 and 7 are “3D” modes , with nodal 
diameters rotated by 300 and so on (the “4D” modes 8 and 9 are rotated , 
while the “5D” modes 10 and 11 are rotated ). 

A different plot of the mode shapes is presented in Fig. 4. 
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Fig. 3. The mode shapes of the undamped system. 

Modes 3, 5, 7, 9, 11 are symmetric sine modes, while modes 2, 4, 6, 8, 10 are 
antisymmetric cosine modes.  When  the sine shape vanishes and all masses 
have uniform displacements. When  every mass vibrates in anti-phase with 
its adjacent neighbours. 

 
Fig. 4. Mode shapes of the undamped system 
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Table 1. Natural frequencies and mode shapes of the undamped tuned system 
 Mode shape 

1 2 3 4 5 6 7 8 9 10 11 12 

 
Mass 

Natural frequencies, Hz 

15.91 16.127 16.692 17.435 18.146 18.650 18.83 

Displacement amplitude 

1 1 1 0 1 0 1 0 1 0 1 0 1 

2 1 0.866 0.5 0.5 0.866 0 1 -0.5 0.866 -0.866 0.5 -1 

3 1 0.5 0.866 -0.5 0.866 -1 0 -0.5 -0.866 0.5 -0.866 1 

4 1 0 1 -1 0 0 -1 1 0 0 1 -1 

5 1 -0.5 0.866 -0.5 -0.866 1 0 -0.5 0.866 -0.5 -0.866 1 

6 1 -0.866 0.5 0.5 -0.866 0 1 -0.5 -0.866 0.866 0.5 -1 

7 1 -1 0 1 0 -1 0 1 0 -1 0 1 

8 1 -0.866 -0.5 0.5 0.866 0 -1 -0.5 0.866 0.866 -0.5 -1 

9 1 -0.5 -0.866 -0.5 0.866 1 0 -0.5 -0.866 -0.5 0.866 1 

10 1 0 -1 -1 0 0 1 1 0 0 -1 -1 

11 1 0.5 -0.866 -0.5 -0.866 -1 0 -0.5 0.866 0.5 0.866 1 

12 1 0.866 -0.5 0.5 -0.866 0 -1 -0.5 -0.866 -0.866 -0.5 -1 

 
2.2. Undamped mass-mistuned system  
A single mass of  is attached to the mass  at . The natural 
frequencies and mode shapes of the mistuned system are presented in Table 2. 
As expected [3], the double modes split into pairs of modes, one with a lower 
natural frequency, the other remaining essentially the same. 
The mode corresponding to the unaltered frequency remains unchanged, but 
rotated such that one of the “nodal diameters” passes through the mistuning mass. 
The mode corresponding to the lower frequency has a distorted shape. The points 
of zero displacement amplitude are no more on a “nodal diameter”. The half part 
containing the attached mass has smaller displacements compared with the other 
half [5]. 
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Table 2. Natural frequencies and mode shapes of the mass-mistuned system 
 Mode shape 

1 2 3 4 5 6 7 8 9 10 11 12 

Natural frequency, Hz 

15.73 16.02 16.13 16.57 16.69 17.30 17.43 18.02 18.15 18.54 18.65 18.80 

Mass Displacement amplitude 

1 1 0.575 0 0.832 0 0.860 0 0.818 0 0.652 0 0.289 

2 0.626 0.246 0.5 0.034 1 -0.432 1 -0.859 1 -0.985 0.5 -0.485 

3 0.395 -0.115 0.866 -0.793 1 -0.937 0 -0.115 -1 0.882 -0.866 0.659 

4 0.254 -0.461 1 -0.957 0 0.265 -1 0.953 0 -0.405 1 -0.803 

5 0.172 -0.747 0.866 -0.322 -1 0.984 0 -0.665 1 -0.243 -0.866 0.911 

6 0.129 -0.934 0.5 0.582 -1 -0.089 1 -0.409 -1 0.788 0.5 -0.977 

7 0.116 -1 0 1 0 -1 0 1 0 -1 0 1 

8 0.129 -0.934 -0.5 0.582 1 -0.089 -1 -0.409 1 0.788 -0.5 -0.977 

9 0.172 -0.747 -0.866 -0.322 1 0.984 0 -0.665 -1 -0.243 0.866 0.911 

10 0.254 -0.461 -1 -0.957 0 0.265 1 0.953 0 -0.405 -1 -0.803 

11 0.395 -0.115 -0.866 -0.793 -1 -0.937 0 -0.115 1 0.882 0.866 0.659 

12 0.626 0.246 -0.5 0.034 -1 -0.432 -1 -0.859 -1 -0.985 -0.5 -0.485 

 
2.3. Damped tuned system 
 
To generate frequency response curves for the principal component analysis, 
proportional damping is added to the cantilevers    and to the 
coupling springs of the system shown in Fig.1.  
For proportional damping, knowing the real eigenvectors, the diagonal modal 
mass, stiffness and damping matrices are calculated as 
 ,   ,   . (26) 
 wherefrom the undamped natural frequencies and modal damping ratios are 
obtained as 
 , . (27) 
Modal parameters of the proportionally damped tuned system are given in Table 3. 
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Table 3. Modal parameters of the damped tuned system. 

 
Mode 

 
Modal 
mass 

 
Modal 
stiffness 

Modal 
damping 
coefficient 

 
Eigenvalue 

 
Natural 
frequency, Hz 

 
Modal 
damping ratio 

1 12 1.2∙105 1.2 1 ∙104 15.9155 0.5∙10-3 

2 6 0.6161∙105 0.6161 1.0268∙104 16.1273 0.5067∙10-3 

3 6 0.6161∙105 0.6161 1.0268∙104 16.1273 0.5067∙10-3 

4 6 0.66∙105 0.66 1.1∙104 16.6923 0.5244∙10-3 

5 6 0.66∙105 0.66 1.1∙104 16.6923 0.5244∙10-3 

6 6 0.72∙105 0.72 1.2∙104 17.4346 0.5477∙10-3 

7 6 0.72∙105 0.72 1.2∙104 17.4346 0.5477∙10-3 

8 6 0.78∙105 0.78 1.3∙104 18.1465 0.5701∙10-3 

9 6 0.78∙105 0.78 1.3∙104 18.1465 0.5701∙10-3 

10 6 0.8239∙105 0.8239 1.3732∙104 18.6504 0.5859∙10-3 

11 6 0.8239∙105 0.8239 1.3732∙104 18.6504 0.5859∙10-3 

12 12 1.68∙105 1.68 1.4∙104 18.8315 0.5916∙10-3 

 
The modal damping ratios are of the order 0.05 to 0.06 percent and the damped 
natural frequencies are essentially equal to the undamped natural frequencies. 

 
2.4. Diagrams of the Frequency Response Functions 
 
FRF curves are shown as magnitude (log scale) versus frequency (linear scale) 
plots. Receptance Frequency Response Functions FRFij have been simulated for 
displacement at coordinate (mass) i produced by excitation at coordinate (mass) j. 
Overlaid curves of the contributing modes of vibration correspond to the respective 
term in the partial fraction format. 
The function FRF11 is shown in Fig.5. Because the symmetric “sine” modes 3, 5, 
7, 9, 11 have a node at the mass , they are not excited by a force applied at 1, 
and do not contribute to the total response. It is obvious that such a plot cannot 
reveal double modes. 
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       Fig. 5. Diagram of FRF11.   Fig. 6. Diagram of FRF21. 
 
The FRF21 plot in Fig.6 has six peaks. Apart from modes 3, 5, 7, 9, 11 with a node 
at mass 1, the contribution of mode 6 is negligible, having a nodal point at mass 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  Fig.7. Diagram of FRF22.    Fig. 8. Diagram of FRF31. 

 
The magnitude plot of FRF22 is presented in Fig.7. Only the 6th mode is 

missing which exhibits a nodal point at mass 2. At four peaks, visual inspection of 
such a plot cannot detect the existence of double modes in the response. If the 
contribution of the other modes can be neglected, analysis by single degree of 
freedom techniques of such individual peaks of direct FRFs yields fairly good 
estimations of the modal parameters, because the sum of the partial fraction 
numerators of the two modes is independent of the mode shape. 
The FRF31 plot from Fig.8 has seven peaks produced by seven modes, because the 
weakly excited modes 3, 5, 7, 9, 11 have a nodal point at mass 1, and mode 7 has a 
node at mass 3.  

 
3. SVD of the compound FRF matrix  

 
Consider a set of test data in the form of N complex valued Frequency Response 
Functions (FRFs) sampled at  frequencies, arranged columnwise in a Compound 
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Frequency Response Function (CFRF) matrix  . Each column 
contains the  frequency-dependent elements of an individual FRF, measured at a 
given output/input co-ordinate combination. Each row contains N complex FRF 
values measured at the same frequency. 
The Singular Value Decomposition (SVD) of the CFRF matrix can be written  
  (28) 
where   and    are the matrices of the left and right 
singular vectors, respectively, and the superscript H denotes the conjugate 
transpose (Hermitian). The singular values  are arranged in non-increasing order 
of magnitude in the real diagonal matrix ฀. 
 

 
Fig.9. Diagrams of the singular values of the CFRF matrix, excitation in 2 and response in 1-12 
 
Because the left and right singular vectors have unit length, the amplitude 
information is contained in the singular values. The SVD decomposes the CFRF 
matrix into a sum of rank-one matrices  of the same size as . 
Each singular value is equal to the Frobenius norm of the associated  matrix 
  (29) 
and can be considered as a measure of its energy content. 
In the upper plot in Fig.9, magnitudes of the singular values are plotted on a 
logarithmic scale, normalized to the largest singular value. The sudden drop in the 
curve after the seventh singular value indicates that there are seven important 
modes in the frequency band. This conclusion is supported by the plot of the ratio 
of successive singular values, which shows a distinct minimum at index 7. 
The right singular vectors (RSV), , describe the spatial distribution of the 
energy contained in the FRF set. 
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3.1 The U-Vector Mode Indicator Function (UMIF) 
 

The left singular vectors (LSV) 
  (30) 
contain the frequency distribution of the energy, being linear combinations of the 
original FRFs that form the columns of   The LSV are mutually (pairwise) 
orthogonal vectors, so they are linearly independent. Their plot versus frequency is 
the U-Vector Mode Indicator Function (UMIF) [6]. The UMIF has peaks at the 
damped natural frequencies. 

  

           Fig.10. UMIF.               Fig.11. Diagram of PRFs. 
  

The UMIF shown in Fig.10 is based on 12 noise free receptance FRFs 
calculated as responses at masses 1 to 12 due to excitation at mass 2. It contains 12 
curves exhibiting peaks at the natural frequencies. In order to better locate the 
modes, the peaks are marked by circles. This is useful especially for noise polluted 
data. 
 
3.2 Principal Response Functions (PRFs) 
 
The SVD of the CFRF matrix is used to define Principal Response Functions 
(PRFs). Plots of PRFs versus frequency have peaks at the natural frequencies and 
can be used to locate double modes [7].  
The Principal Response Functions, , defined as the LSVs scaled by the 
respective singular values, are linear combinations of the original FRFs,  : 
 . (31) 
The PRF plot from Fig.11 is determined for the same input/output conditions as the 
UMIF plot in Fig.8. Here the 7 important modes are clearly separated from the 5 
modes with low energy. The scaling of the PRFs by the singular values makes 
them less appropriate for use as modal indicators. 
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3.3 The Componentwise Mode Indicator Function (CoMIF) 
 

The Componentwise Mode Indicator Function is defined [8] by vectors 

     (32) 
 

computed as the difference between a column vector of ones and the Hadamard 
product of the left singular vectors. In equation (32) the star superscript denotes the 
complex conjugate. 
 

    

        Fig.12. CoMIF with subplots       Fig.13. CoMIF with overlaid curves 
 

In the CoMIF plot, the number of curves is equal to the rank of the CFRF matrix. 
Each curve has a local minimum at a damped natural frequency, with the deepest 
trough at the natural frequency of the corresponding dominant mode. 
The CoMIF plot with individual curves displayed separately in subplots is shown 
in Fig.12 for the same input/output conditions as the PRF plot of Fig.11: input at 2 
and output at 1 to 12, with noise free data. Subplots correspond to individual 
CoMIFs with the index shown on the left. A cursor is provided to better locate the 
damped natural frequencies. 
The CoMIF plot with overlaid curves is shown in Fig.13. In order to better locate 
the natural frequencies, the lowest trough of each curve is marked by a circle with 
the index shown next to the right. This is useful especially in the case of lightly 
damped systems with repeated natural frequencies. Both CoMIF plots clearly 
locate all 12 modes of vibration, despite the single point excitation in a system with 
double modes. 
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Fig. 14. CoMIF of mistuned system. 

 

 
 

Fig. 15. Overlaid CoMIF of mistuned system. 

For comparison, Figs.14 and 15 show the CoMIF plots for the damped mass-
mistuned system, based on 12 FRFs with input at 2, output at 1 to 12 and noise free 
data. They illustrate how the double modes are split by mistuning. In Fig.14 the 
damped natural frequencies are located by the deepest trough of each subplot. 
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Fig. 16. UMIF of mistuned system . 

 
Fig. 17. PRF plot of mistuned system. 

 
Note that the above presented CoMIF plots are based on noise free FRFs obtained 
with single point excitation. If the pattern of CoMIF curves is not so clear, it is 
recommended to change the excitation point or use excitation in two points. 
The UMIF and PRF plots for the damped mistuned system are presented in Figs.16 
and 17, based on 12 FRFs with input at 2, output at 1 to 12 and noise free data. On 
both diagrams all 12 natural frequencies are clearly located. 

 
4. Concluding remarks  
 
To determine the number of modes present in a frequency range, the Mode 
Indicator Functions (MIFs) in current use are based on the stepwise analysis of 
rectangular FRF matrices, one frequency at a time. To locate close modes, such 
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MIFs require FRFs measured at a number of input points equal to the multiplicity 
of eigenfrequencies. Examples are the Complex Mode Indicator Function (CMIF) 
and the Multivariate Mode Indicator Function (MMIF) [7]. Their plots have as 
many curves as the number of references. 
The mode indicators UMIF and CoMIF, based on the left singular vectors of a 
matrix encompassing all measured FRFs as columns, can reveal double modes 
even for single reference. This was illustrated for a cyclic lumped parameter 12-
mass system using simulated FRF data.  
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