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Abstract. Wind speed intermittence and its forms of pattern change represent sources of 
significant uncertainties related to wind power. This article introduces a methodological 
system designed to contribute to an effective assessment of wind resources, by 
complementing the current wind speed evaluation procedures with the capability of 
capturing time-scale-dependent pattern properties. The proposed approach to nonstationary 
wind speed time series produces a comprehensive picture of the wind patterns, in which 
wind speed variability is quantitatively explored in terms of both time and temporal scale. 
This approach can thus support responses to the challenges posed by the task of assessing 
and comparing locations for wind turbines and wind farms, especially in the context of 
pattern changes in wind resources expected to occur due to climate change. 
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1. Introduction 
 
The challenges involved by climate change and the worldwide increasing energy 
demand contribute to a growing importance of renewable energy sources. In this 
context, wind energy is particularly attractive [1], especially if applied in 
combination with other renewable sources, such as solar and wave energy [2]. 
Wind energy has a low contribution to air pollution compared to other energy 
sources, and its carbon footprint is remarkably small; moreover, it does not 
contribute to a deepening of the water crisis, which was identified as one of the 
major global risks of the future [3]. Overall, the robust development of wind power 
has major positive effects on sustainability [4]. 
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Like all energy sources, wind energy also has its limitations. One of the most 
important ones is caused by the intermittent nature of wind [5-7]. In fact, wind 
speed variability represents the main natural component of the uncertainty affecting 
this energy source. Addressing intermittency already involves a range of solutions 
[8], but they contribute to the cost of energy: therefore, it is important to accurately 
assess intermittency and minimize its effects. Numerous statistical methods have 
been applied for the evaluation of wind speed variability, starting with the 
coefficient of variation, statistical moments of second, third, and fourth order, the 
range divided by the weighted average of the quartiles, etc., to more robust 
statistics, such as the median absolute deviation divided by the weighted average of 
quartiles, the median absolute deviation normalized by the median, etc. [9]. While 
these methods differ from each other in many ways, they all focus on sets of wind 
speed values, without taking in consideration the succession of these values in the 
time series. More detailed approaches to wind speed patterns, such as wind speed 
distributions, offer a more comprehensive picture of wind patterns [10], but they do 
not convey any information on the way the wind speed values are actually 
distributed in time. 
However, as this paper will show, depending on the goal of wind speed pattern 
analysis, the temporal succession of the time series values can be crucially 
important for the way in which wind turbines operate, and their overall 
effectiveness. A realistic and comprehensive evaluation of wind patterns, 
performed, for instance, in order to assess potential locations for a wind farm, or to 
compare locations for individual wind turbines, cannot ignore the effects created by 
the temporal succession of wind speed values.  
Wind variability is expressed on a wide range of time scales, from under one 
second to months, years, etc. [6, 11] On a sub-second to second range, wind 
variability is important for the wind turbine loading, which varies as a function of 
both time and height: turbine design must take these dynamic aspects of wind flow 
in consideration. On a scale of hours to days to months and more, implications of 
wind variability affect energy availability. Acquiring information on scale-
dependent characteristics of wind patterns becomes particularly relevant when the 
wind turbine is considered from the point of view of its energy conversion 
effectiveness. 
On the other hand, climate change is involving significant change to wind patterns 
[12-14]. Not only is the overall wind potential affected: its variability is also 
changing; moreover, the ranges of time scales on which such changes occur suffer 
transformations in their turn [15, 16]. 
For these reasons, beyond the mentioned commonly assessed statistical aspects of 
wind speed patterns, a reliable wind resource assessment system must include the 
capability of extracting (i) time series characteristics that reflect the temporal 
succession of wind speed values, and (ii) time-scale-dependent properties of wind 
speed patterns. The methodological approach to wind speed pattern analysis 
presented in this paper not only captures the effects of wind speed value 
succession, but it considers them on a range of time scales. The paper will first 
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offer details regarding the goals of this approach; subsequently, it will present a 
method designed to assess scale symmetry properties of time series, after which it 
will build upon this method and incorporate it into a new, more comprehensive 
methodology, which determines scale-dependent roughness of wind speed time 
series. The theoretical aspects are illustrated with concrete analysis examples 
referring to wind speed records from two different locations. 
 
2. Aim and scope 
 
The aim of this paper is to introduce and illustrate a methodology for wind speed 
pattern analysis, which is designed to detect, evaluate, and graphically represent 
time series characteristics that are important to wind power systems, but which are 
not captured by approaches that are commonly applied in the field of wind energy 
studies. Wind speed patterns are nonstationary, and their variability extends on a 
wide range of time scales [17, 18]. Methods specifically developed for the analysis 
of strongly variable patterns offer fertile avenues towards effective and practically 
applicable assessment systems [19-22]. 
To present the proposed approach, we should first note that time series are 
characterized by two qualitatively different properties: their value distribution, and 
(assuming that trends and periodicities are removed) their “persistence”, which 
depends on the actual succession of those values [19]. The distribution of wind 
speed values is usually represented with the help of theoretical distributions such as 
Weibull, Rayleigh, lognormal, and others; while none of them offers a suitable fit 
applicable to all situations, the Weibull distribution is often the preferred one 
[10,23]. The persistence, on the other hand, depends to a large extent on the 
succession of time series values, which can be considered  on different time scales. 
Due to wind intermittency, there are times when the turbine rotation slows down, 
or even ceases altogether. Such events are reflected in the values of wind speed 
average and the various statistical properties that are used. However, those 
statistical evaluations are not telling the whole story. After slowdown events or 
“pauses” in the rotation of a wind turbine, when wind speed increases again, 
energy is first used to put the rotor in motion and to accelerate the rotation. Energy 
and time are thus lost not only during time intervals of slow wind, but also during 
the recovery from weak power output stages. Therefore, counting on the wind 
power for all the time intervals when the wind speed appears to be high enough, 
according to the power curve of the turbine, can lead to incorrect results. The 
number and the temporal distribution of such phenomena are not revealed by the 
information on average wind speed, or by the statistics that relies on wind speed 
values alone, without considering their temporal distribution.  
For these reasons, it is important to capture time series properties that include both 
their values and their distribution in time, on a range of scales. The goal of this 
paper is to produce an effective tool for practical use in relation to wind energy, to 
complement the existing approaches to wind resource assessment by providing a 
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comprehensive picture of wind patterns – one that captures meaningful aspects of 
practical importance regarding wind speed variability. 
 
3. Data and Methods 
 
The wind speed data used in this study are provided by AgriMet, Columbia-Pacific 
Northwest Region, USA, and refer to the time interval 2003-2020, in two stations: 
Corvallis, Montana (latitude: 46.3 N, longitude: 114.1 W, elevation: 1096 m) and 
Brookings, Oregon (latitude: 42 N, longitude: 124.2 W, elevation: 24 m). Wind 
speed data are given at 15 minute-intervals. As an example, a seven-year record for 
the station of Corvallis is shown in Fig. 1. 
The methodology proposed in this paper starts from and incorporates Detrended 
Fluctuation Analysis, which was proven to get reliable results in a wide variety of 
applications, especially for nonstationary time series, for which other methods are 
often affected by errors and biases [22, 24]. This method is briefly described 
below. The new methodology, which is introduced thereafter, uses the scale-
dependent time series variability or “roughness” to generate time vs.  temporal 
scale variability diagrams. The choice of the term “roughness” for these aspects of 
time series follows the recommendation of the founder of this field of research, 
Benoit Mandelbrot [25]: a useful review of the areas in which this term is applied 
in this scholar’s ground-breaking work is provided in [26]. Indeed, while scale 
symmetry properties of time series can be usefully characterized using methods 
like those described below, the interpretation of results in terms of long-term 
memory, for instance, is not always helpful. On the contrary, such an interpretation 
can even be misleading, when it may imply features of the underlying dynamic 
system, which do not properly describe the studied processes [27]. In this paper the 
term “roughness” and its quantitative characterization refer to properties of the 
time series as such, and they are used to compare different segments of data 
records, time series on different time scales etc. 
 

 
Fig. 1. Wind speed data (15-minute values) recorded in Corvallis, Montana,  

between July 1st, 2013, and July 1st, 2020. 
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3.1. Characterizing roughness in time series: method and applications 
 
The first phase of the proposed methodology consists of the analysis of individual 
time series using Detrended Fluctuation Analysis (DFA), which is a powerful 
analysis method that has been widely applied to a variety of processes in the 
environment [28-31].  
After normalizing the data, by subtracting the mean and dividing the result by the 
standard deviation, the time series is divided up in windows of size s, considered in 
terms of number of samples. The process of dividing the record in windows occurs 
repeatedly in successive steps, for a series of values of the time scale s. For each 
time scale s, the “average size of the fluctuation”, denoted by F, is determined. 
Thereby, we obtain a series of pair values, s and F(s). If this relation is a power 
law: 

            (1) 
for a range of time scales s, then the analyzed time series has scale symmetry 
properties – it is self-affine [19] – over this time scale interval, and its self-affinity 
is characterized by the exponent H. While the H-exponent is related to the “Hurst 
exponent”, which is determined with other methods [26], it has a distinct meaning, 
and should thus not be confused with the latter [25]. The H-exponent has values 
that span the interval (0, 1); time series with H>0.5 are considered persistent, while 
those with H<0.5 antipersistent. The H-exponent offers a quantitative description 
of time series roughness, which is associated with a certain range of time scales, as 
described below. Lower values of H are associated with lower persistence, and thus 
with a higher roughness of time series. 
While this approach is applied in a series of pattern analysis methods, the DFA-
specific aspect of this procedure consists of the way in which the “average size of 
the fluctuation” F is defined. In this case, the best fit polynomial of order N, PN,s, is 
found for each window Ws of length s, and subsequently subtracted from the actual 
time series in this window. In this study, N=4 was chosen for the polynomial 
degree, since it led to the narrowest uncertainty intervals; however, values for N = 
1 to 7 are all known to provide accurate results [24]. The outcome of this operation 
is the time series: 

                            (2) 
The mean of the sum of squares of these differences is then calculated for each 
window U: 

   (3) 

and the square root of the mean of all F2(U) values gives the average size of the 
fluctuation for all r windows: 

             (4) 

Two typical examples of the F(s) relation are shown in Fig. 2: the logarithm 
representation in the diagram emphasizes the linear relationship corresponding to 
the power law, as per eq. (1). These wind speed records are shown to exhibit a self-
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affine character, with a roughness given by an H-exponent H=0.34 and of H=0.26, 
respectively, for these analyzed time series. The obtained H-exponent values had a 
narrow 95% confidence interval, which is not surprising – the size of this interval 
is usually lower than 0.01: the linear correlation is strong, with R2 > 0.98. This is 
the case for most of the analyzed wind speed time series. As shown in Fig. 2, the 
scale range for the F(s) power law relationship extends from s = 101.3 to 102.5 
samples (i.e. 20 to 316 samples): since four samples correspond to one hour, the 
interval of scaling presented in Fig. 2 extends from time scales of five hours to over 
three days. One can also see from this description that DFA is related to power-
spectrum-based methods. However, DFA was proven to be more reliable than 
spectrum-based methods, especially for nonstationary time series, in which case it 
is capable of an accurate determination of the H-exponent [31]. Since wind speed 
time series are nonstationary, and an accurate characterization of variability was 
essential to such studies, it was DFA that was incorporated in the newly designed 
methodology. 
To illustrate the novel, additional nature of the information provided by DFA, 
compared to the statistical methods mentioned above, we performed the following 
experiment. We analyzed a time series corresponding to a one-month record of 
wind speed values, from Corvallis (Fig. 3), according to the method described 
above. Then, by keeping all wind speed values unchanged, we randomly shuffled 
the data in the time series, thereby changing the original temporal sequence of 
these values. The resulted shuffled time series was then subject to the same DFA 
analysis. Any difference between the results of these two cases, which both contain 
the same values, must therefore be attributed to the effect of the temporal sequence 
of values. The results can be seen in Fig. 4. The thin solid line, along with the 
dotted straight regression line, correspond to the original wind speed time series.  
The thick solid line and the line-dot regression line belong to the shuffled time 
series. The difference is striking. The numerical results are even more relevant. The 
two exponents are: H=0.32 for the original time series, and H=0.03 for the same 
time series after shuffling the order of the samples. 
It should be emphasized that not only do these two time series have the same mean, 
median, coefficient of variation, etc. They are indiscernible from the point of view 
of all the mentioned statistical methods applied to wind speed studies, since they 
consist of the same values. DFA can thus reveal aspects of time series that are 
indiscernible by the statistical methods that involve time series values, but not their 
temporal distribution. It is also able to accurately assess patterns without being 
influenced by nonstationarity. Therefore, it can represent a valuable starting point 
for the construction of a methodology designed to offer a comprehensive, scale-by-
scale view of wind speed variability. The resulting procedure is described below. 
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Fig. 2. Two examples of DFA applied to wind speed data recorded in successive months (April and 

May 2005) in Corvallis, Montana. The dotted line represents the linear regression line. 
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Fig. 3. A one-month segment of the wind speed data record from Corvallis, Montana 

 
 

 
Fig. 4. DFA applied to the original wind speed time series (shown in Fig. 3), and to the same time 

series after data shuffling. The roughness results prove to critically depend on data succession. 
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3.2. Time-scale-dependent roughness: isopersistence diagrams 
 
As shown in section 3.1, DFA is capable of reliably producing a quantitative 
characterization of time series from the point of view of their scale symmetry 
properties, or self-affinity. It identifies a number, the H-exponent, which describes 
the roughness of the time series on a range of time scales. The goal of this paper is, 
however, to produce a comprehensive picture of the wind speed variability, so that 
it can be followed and described both in time and as a function of the time scale. 

 

 
Fig. 5. The first step of the method: splitting the record in a number of intervals (here, of. one month). 
 

To determine the scale-dependent roughness, this new methodology consists of the 
following steps. After splitting the time series into a number of time intervals, each 
time interval is subject to DFA analysis. However, instead of stopping after 
establishing the H-exponent, the analysis moves deeper, by looking at the scale-by-
scale aspects of the F(s) relation. Following observations from [27], the method 
calculates the successive slopes for V successive points in the F(s) graph: it applies 
linear regression to the log(s) vs. log(F) relation inside windows of K points that 
are shifted by one point along the whole graph (Fig. 6). 
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Fig. 6. Determining successive slopes for V-points running interpolation segments (here, V=5).  

The first three sets of V points are shown. 
 

Instead of only focusing on the successive slope values [32], according to the new 
method we store these values as a matrix column that corresponds to the analyzed 
time interval (e.g. one month, one year, etc). This procedure is then applied, in 
sequence, to all the following time intervals that were produced by splitting up the 
initial time series (Fig. 5). A set of successive slopes will thus be obtained for each 
time interval, and inscribed as additional columns to the persistence matrix, W.  
The resulting matrix W consists thereafter of the following elements: 

Hn, q  Hn+1, q  Hn+2, q … Hn+k-1, q    Longest time scale 
Hn, q-1  Hn+1, q-1  Hn+2, q-1 … Hn+k-1, q-1 
Hn, q-2  Hn+1, q-2  Hn+2, q-2 … Hn+k-1, q-2 ↑            (5) 

Hn, 1  Hn+1 ,1  Hn+2, 1 … Hn+k-1, 1      Shortest time scale 
Time →             

The indices of H-values have the following meanings: 
n is number of the analyzed time interval (e.g. month, year, etc.); the value of n 
grows from left to right for a total number of k intervals (from n to n+k-1); 
q is the number of the successive slope values determined for each time segment, 
based on V-point linear regression in log-log representation (Fig. 6). 
In the next stage, the W matrix is shown in a graph: isolines are produced and 
graphically represented, and the areas they separate are filled according to a colour 
code. The resulting “persistence landscape” shows values of H-exponents for each 
time segment and time scale interval. Therefore, contour lines are lines if equal 
persistence, or isopersistence lines. Using isopersistence diagrams, the time series 
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variability can be viewed as a function of both time and temporal scale. An 
illustration of the method is presented below. 
 
4. Results and discussion 
 
The method presented in chapter three is applied to the two specified wind speed 
datasets: from Corvallis, Montana, and Brookings, Oregon. As shown in chapter 3, 
the information provided about the time series in terms of self-affinity properties is 
distinct from the one extracted by the set of statistical methods discussed above. 
The scale-by-scale approach together with the construction of the persistence 
matrix based on the analysis of multiple time windows, which represent a novel 
approach to wind speed patterns, offer a new perspective on wind speed variability 
(Fig. 7).  
The X-axis in this diagram represents time: each vertical slice of the diagram is 
associated with a time interval. The X-axis density depends on the chosen number 
(and, in the end, size) of analyzed time intervals (Fig. 6) – months, years, etc., and 
the length of the available record. The Y-axis represents the q time scales for which 
H-values were determined based on V-points running segments: in this diagram, 
they start with 101.38 and reach up to 102.38 samples, in other words, time scales in 
these diagrams span an interval between six hours and 2.5 days.  
Roughness varies both as a function of time and of temporal scale. These diagrams 
make it possible to compare, side-by-side, wind patterns in different locations, as 
well as different time intervals for the same station. On the other hand, they also 
offer information about the way in which variability changes over time, for any of 
the studied time scales.  
Instead of obtaining merely a number for each time interval, in order to see if and 
how the determined statistic grows and decreases in time, we benefit from richer 
information: a two-dimensional surface, on which we can follow or compare 
variability for any time interval and on any of the studied time scales. As explained 
in section 3.2., the time scale in isopersistence diagrams (the vertical axis) is the 
same with the one on the X-axis in the log-log diagrams (Figs. 2, 4, and 6): it is the 
base 10 logarithm of the size of the time window in number of samples. By 
analyzing the isopersistence diagram for Corvallis, one can notice an enhanced 
roughness for certain time scales, such as 2.1 (around 30 days): this feature cannot 
be found for Brookings. On the other hand, one can identify in both diagrams 
certain years when  the roughness was stronger (2007, 2010, 2016 in both stations), 
or less strong (2009 and 2019 in both stations, and 2014 in Brookings). Persistence 
diagrams can also offer clear answers regarding the comparison of variability 
between two different locations. In the case illustrated here (Fig. 7), wind speed 
patterns in Brookings prove to have a lower roughness than Corvallis, on the whole 
range of scales that was studied: the colour bars have the same range in both cases, 
to facilitate the comparison. 
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Fig. 7. Isopersistence diagrams for wind speed records from two stations (Corvallis, MT in the upper 
graph, and Brookings, OR in the lower one). The time scale (base-10 log of sample number) is the 

same with the X-axis in Figs. 2, 4, and 6. The colour code represents H-values: lower values (darker 
colours) indicate rougher, more variable wind speed patterns.  

. 
The proposed methodology makes it also possible to zoom in and zoom out of the 
diagram, for instance, in order to study certain areas of the roughness landscape in 
more detail, which offers a flexible approach to the analysis of variability. 
Although changes in X or Y direction can be made, in principle, independently 
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from each other, certain limits in one direction (such as the minimum length of 
time windows) can impose constraints regarding changes in the other direction 
(e.g. temporal scale resolution). However, changes in isopersistence diagram 
resolution can be independently chosen for the X-axis (time) and the Y-axis 
(temporal scale) for a wide range of their respective values. To change the X-axis 
resolution, the analyzed record is divided up in shorter or in longer windows. To 
change the Y-axis resolution, the number of values for the time scale s in the DFA 
analysis stage is modified accordingly.  

 
5. Conclusions 
 
The wind pattern assessment system presented in this paper offers direct access to 
accurate information on wind speed variability on a wide range of time scales. It is 
flexible, easy to use, and adaptable to specific purposes of wind variability 
analysis, from wind turbine design to insights into the selection of wind turbine 
locations. The outcome of the system consists of intuitive maps on which one can 
readily follow and compare information on wind variability as a function of time 
and temporal scale. 
The system introduced and described in this article is not meant to replace proven 
instruments for wind pattern assessment. It is presented as a potentially useful 
addition to existing methodological toolboxes, since it is capable of effectively 
complementing their outcomes with valuable information of practical importance. 
Acknowledgements: The author would like to thank AgriMet, Columbia-Pacific 
Northwest Region, USA, for providing the wind speed data analyzed in this paper. 
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