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1. Signal processing on graphs 
 
The motivation of this undertaking is to emphasize the role of the Laplacian 
properties in apparently unrelated areas associated to interactions represented by 
graphs. Recently the notion of signal processing on graph has been proposed as a 
generalization of that of signal [1].  
First, we make a short survey regarding the way the Laplacian of a graph can be 
used in characterizing and processing signals associated to the graph. 
Let us remind one of the fundamental principles in signal theory, i.e., that of 
decomposing signals with respect to a basis: 


i

iix α  

where ϕi are the elements of the basis and {αi} represents the spectrum of x with 

respect to that basis. The ambiguity regarding the domain x and ϕi are defined on 
has been deliberately assumed since there are several possibilities time, space or 
both, including graph vertices.  
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The notion of graph is well-known: it consists of a set of vertices, connected by 
edges characterized by weights. The concept of signal on a graph is intimately 
related to the above definition, the extra ingredient being that each note is 
considered to be “loaded” with a value associated to a vertex.  
A sketch of a signal on a graph is shown in Fig. 1. Basically the graph is 
represented by vertices, edges with weights and “loads” for each vertex. 

 
Fig. 1. Sketch of a signal on a graph. 

 

A matrix related to the concept of graph is the Laplacian, defined for the un-
weighted undirected graph as LG=DG-AG, where DG is the degree matrix and AG the 
adjacencies one.  For weighted graphs the Laplacian matrix has the form  
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where wij are the edge weights. Observe that in the standard definition of the 
Laplacian it is supposed that the diagonal entries of matrix AG or the corresponding 
ones for the weighted case are null. This hypothesis is not compulsory if we accept 
vertices with self-edges. Such a situation appears when the graph models a circuit 
composed of identical grounded capacitors and a network of resistances connecting 
the “hot” terminals in the condition that positive or negative resistances are allowed 
across the capacitors. The consequence is that the zero eigenvalue corresponding to 
the constant eigenvector does not necessarily appear.  
Coming back to signal processing on graph several basic challenges are: finding 
appropriate methods to determine the graph topologies and edges weights, 
developing transform methods and seeking to associate them with classical signal 
processing technique and, last but not least, find new specific ways to use the 
concept in a broader sense [2].  
Part of responses to the above challenges are given in the same paper with 
reference to Fourier-graph spectral analysis analogies, filtering, translation, 
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modulation and down-sampling which are discussed in detail with emphasis on 
advantages, limitations and open problems. 
The fundamental aspect that makes the problem of signal processing on graph 
appealing and more than interesting is the mathematical result which states that a 
symmetric matrix has real eigenvalues and orthogonal eigenvectors. 
Moreover for a symmetric nxn matrix M the eigenvalues can be ascending ordered 

n  21  with the corresponding eigenvectors ψi, I = 1, 2,…, n inferring the 

following relations:  
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which means that the i-th eigenvalue of M in ascending order can be obtained by 

minimizing the expression 
xx
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T

 for vectors x orthogonal on the first  i-1 

eigenvectors of M, the i-th eigenvector associated to the i-th eigenvalues being the 
vector x, orthogonal on the first i-1 eigenvectors which minimizes the same 

expression 
xx

Mxx
T

T

.  

The above property allow making an analogy with Fourier transform by associating 
small eigenvalues corresponding to smooth eigenvectors with low frequencies and 
Fourier harmonic waveforms. 
 
2. Patterns 
 
The next aspect we mention regarding the concept of signal processing on graphs is 
pattern formation in nonhomogeneous cellular neural networks defined on graphs. 
The main idea is to study an architecture composed of identical grounded 
admittances connected to the vertices of a resistive grid.  
The equations that describe the network are [3]: 

       xLtxAtxsY G
Nk

kiki
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  (1) 

where Y(s) is the linear integro-differential operator corresponding to the 
admittances, Ni symbolize the neighborhood of each cell and LG is the network 
Laplacian which acts on the vector x representing voltages on the graph 
nodes/vertices.  
The equations can be solved by using the decoupling techniques which is based on 
the change of variable: 
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where ϕM(i,m) are the eigenvectors of the Laplacian which are known to be 
orthogonal and associated to real eigenvectors (positive for positive weights of the 
Laplacian). 
Thus the spectrum of the discrete spatial and continuous time signal can be written:  
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and after some manipulations the dynamics of the components of the initial 

conditions signal can be written as 
        txmKtxsY mAm ˆˆ   (4) 

or 
           0ˆˆ  txsPmKtxsQ mAm  (5) 

where Q(s) and P(s) are respectively the numerator and the denominator of the 
admittance Y(s) and KA(m) the eigenvalues of the resistive network Laplacian the 
characteristic polynomial of each spatial mode amplitude being 
       0 sPmKsQ A . (6) 
Since the standard Laplacian eigenvalues are nonnegative, it is apparent that, for 
real positive functions Y(s) all modes are stable. However, if we accept negative 
resistances as well, either connected between nodes or between a node and ground 
the characteristic polynomial is no more Hurwitz and the dynamics can leads to an 
indefinite growth of the unstable modes. Indeed, since the interconnection matrix is 
symmetric, the eigenvalues will be again real and the eigenvectors orthogonal.  
It seems that for first order cells it is not possible to have a “band” of unstable 
modes as in the case of double grid CNN or for other models. The possibility of 
having un unstable band of modes might exist for more complicated forms of Y(s).  
Last but not least, let us observe that, using the dynamics of a CNN defined on 
graph it is possible to make signal processing determined by the values of the 
eigenvalues of the graph which will influence the decay or growths of the modes in 
the system and the time the system is frozen to get the new spatial signal.  

 
Fig. 2. State evolution leading to a pattern. 
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An example from [3] in Fig.1 shows the evolution of the node voltages for a graph 
defined cellular neural network exhibiting unstable modes. 
 
3. Consensus protocol 
 
Another topic related to the concept of signal processing on graphs is that of 
consensus protocol. There is a striking analogy between the dynamics of a 
nonhomogeneous CNN defined on a graph with Y(s)=s and the linear weighted 
consensus protocol over a weighted and undirected graph on |V| = n nodes, 
described by the graph G = (V,E,W), and the equation 
      txGLttx dd . (7) 
In [4] the idea of using negative weights edges is analyzed with respect to the so 
called consensus protocol. The fundamental aspect is that of making a difference 
between synchronization and cluster synchronization. 
In terms of graph circuit intuition, the difference consists in the fact that, for one or 
several negative weight edges in the graph, the above mentioned system of 
differential equations can still have a stable solution corresponding to global 
synchronization while for the case when the negative weight edges have value such 
that 0s  is a natural frequency or root of the characteristic polynomial, the 
behavior of the system corresponds to cluster synchronization.  
The intuition behind this behavior is that of having a root of the characteristic 
polynomial for a non-constant eigenvector as in the general case.  
In other words the equilibrium point for 0s  is no more the case all vertices have 
the same value/voltage but when the vertices exhibit a pattern proportional to the 
eigenvector associated to the 0s  eigenvalue. 
 
4. Manifolds 
 
The last concept associated to graphs, eigenvalues and eigenvectors is that of 
manifold dimension reduction a concept apparently difficult to be considered as 
belonging to the topics of signal processing on graphs. The main idea of manifold 
learning and classification is that of finding a mapping between points in a high 
dimensional space and points on a manifold of (much) lower dimension with the 
constrain that points that are close in the initial space map to points that are also 
close on the manifold with respect to the geodesic distance.  
According to [5] the optimum mapping that conserves distances is on the manifold 
consists of projections of the points in the initial space on the first k eigenvalues 
associated to the first (smallest) eigenvalues of the Laplacian of the data vectors. 
The main aspect that should be addressed is that of finding the weights for the 
underlying graph a matter that can be solved either using the heat transfer kernel  
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or a 1/0 approach for signals within a prescribed neighborhood with respect to 
Euclidean distance. Thus, the solution of the problem is given by finding the 

eigenvalues n  21  with the corresponding eigenvectors ψi, i=1, 2,…, n, as 

above and choosing a dimension k for the manifold which consists of the 
projection of all points in the initial space to the k eigenvectors associated to the 
smallest (nonzero) eigenvalues.  
A first demonstrative example is presented in Fig. 3 with projections on a 2D 
manifold (Fig. 4) and 1D manifold (Fig. 5) for 4 neighbours and σ = 10 for the heat 
transfer kernel. 

 
Fig. 3. Set of vectors belonging to two classes (1st example) 

 
 

 
Fig. 4. Result of projection on a 2D manifold (N =4 sigma = 10) 
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Fig. 5. Result of projection on a 1D manifold (N = 4 sigma = 10). 

 
Another example corresponding to a manifold containing several classes of vectors 
is presented in Fig. 6 together with projections on a 2D (Fig.7) and 1D (Fig. 8) 
manifold for 10 neighbours and sigma = 10. 

 
Fig. 6. Set of vectors belonging to several classes (2-nd example). 

 

 
Fig. 7. Result of projection on a 2D manifold (N = 10 sigma = 10). 



 
 
 
 
 
 

     Goraş L. and Fira M. / On signals processing on graphs, patterns… 
 

 
 
 
 
 
 
 
298 

 
Fig. 8. Result of projection on a 2D manifold (N = 10 sigma = 10). 

 
The above examples show that both N, the dimensions of the neighborhood as well 
as sigma are both important and rules to choose them for best classification results 
are not straightforward. 
 
5. Concluding remarks 
 
Connections between signal (processing) on graphs, patterns, consensus and 
manifolds have been shortly discussed, emphasizing the fact that all notions are 
related through the concept of graphs Laplacian, its real eigenvalues and 
orthogonal eigenvectors. It is expected that the observations made in this 
communications will help getting a better intuition on apparently unrelated areas. 
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