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Abstract. This paper presents some of our results in using of the Smoothed Particles Hy-
drodynamics (SPH) method for the numerical modelling of the detonation phenomena. The 
study of the detonation is very important for evaluation of different explosives and even for 
their design. The paper also presents, in a synthetically way, some fundamentals of the 
detonation. The numerical modelling of the detonation can be made by Finite Element 
Method (FEM), but using of the SPH method brings some important advantages because the 
large deformations, large distortions occur. If the FEM can be used in Arbitrary Lagran-
gian-Eulerian (ALE) formulation, the SPH method can easily works and next to it, some 
specific parameters (density variation, specific energy etc.) can be obtained and analyzed by 
post-processing. The numerical results (by FEM and by SPH method) are compared with 
theoretical results. The numerical study allowed us to analyse the influence of some explo-
sive characteristics and of the circumstances (non confined and confined explosive) upon 
detonation parameters 
 
Keywords: detonation, explosion, FEM, SPH 
 
1. Introduction 
 
There are many reasons for studying the detonation phenomena; also, a study can be 
made from different point of view. Our paper is focused on the detonation parame-
ters calculus, using in a comparative way, two powerful numerical methods: well 
known and large used method of finite elements (FEM) and a much newer numerical 
method, less known and less used in our country, namely smoothed particles hy-
drodynamics (SPH) method. In this paper, the fundamentals of the FEM and SPH 
method are considered known by the reader and we’ll synthetically present only 
some fundamentals about explosions and explosives, which represent the application 
domain of the numerical methods. 
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1.1. Explosives and Explosions 
 
Any chemical compound, mixture, or device, having the primary purpose to function 
by an explosion could be named an explosive. Three types of explosions exist: nu-
clear, mechanical and chemical. A chemical explosion is caused by an extremely fast 
conversion of a solid or liquid compound into hot gases having a much greater 
volume than the substances from which they are generated.  
Explosives are classified into two categories: low and high. An explosive is said to 
be a low one, when the rate of advance of the chemical reaction zone into the un-
reacted explosive zone is less than the sound velocity through this zone. A low ex-
plosive burns or deflagrates rather than detonates. In turn, this category is also di-
vided into two categories: gas-producing low explosives and nongas-producing low 
explosives. 
High explosives are those which have the rate of advance of the chemical reaction 
zone into the unreacted explosive greater than sound velocity through this zone. This 
rate of advance is termed the detonation rate. There are two types of high explosives: 
primary and secondary high explosives. A primary high explosive is characterized 
by an extreme sensitivity to initiation by both heat and shock. A secondary high 
explosive is initiated only by a relatively high intensity shock. High explosives are 
most used both in military and civil domains. The most known and used such ex-
plosive is TNT. 
 
1.2 Blast Waves 
 
The products of the reacted explosive move into surrounding zone, in the form of 
propagation waves. There are two types of propagation waves: detonation and de-
flagration waves (Fig. 1). The deflagration waves have subsonic velocity and they 
are expansive waves. Typically, deflagrations propagate at speeds on the order of 
1…100 m/s. Across a deflagration, the pressure decreases while the volume in-
creases. The phenomena of detonation is that initial process of an explosion, being a 
very rapid and stable chemical reaction, which proceeds through the explosive ma-
terial at a speed, called the detonation velocity.  

 

  
           Fig. 1. Explosion waves.                               Fig. 2. Detonation shock wave inside the 
                                                                                                           Explosive. 

 



 
 
 
 
 

Journal of Engineering Sciences and Innovation, Vol. 4, Issue 1/ 2019 
 

 

 
 
 
 
 

3 

Detonation waves have supersonic velocity and they are compressive waves. 
Typically, detonation waves propagate at speeds on the order of 2000 m/s. Across a 
detonation, the pressure increases while the volume decreases. 
Those two zones, representing the reacted and unreacted explosive (Fig. 2), are 
separated by the shock front or leading surfacee. The thickness of the shock front is 
about 0.10 mm, for many pure explosive, but it can be larger depending on the high 
explosive (HE).  
This is a boundary between two regions with a discontinuous high pressure. Here, in 
the shock front (Fig. 2) chemical reactions take place and bulk detonation energy is 
released. At the rear shock front, a complete thermodynamic equilibrium exists and 
the detonation products are said to be at Chapman-Jouguet (C-J) state. Normally, the 
detonation pressure refers to the pressure in the C-J state, which often is lower than 
the pressure at the shock front. 
 
2. Fundamentals of Detonation 
 
Theory of detonation has deep roots in the past. First observations, upon detonation 
waves, were made by French workers in about 1880. Later, Chapman (1899) and 
Jouguet (1905), independently gave the first theoretical fundamentals of detonation, 
considering that detonations travel at a particular velocity which has a minimum 
value (C-J velocity). The development of detonation theory continued, so Zeldovich 
(1940), von Neumann (1943) and Döring (1943) independently postulated that the 
detonation is a combustion wave, sustained by the shock wave. 
All the processes which occur regarding formation and propagation of the blast 
waves and detonation waves as well, present a great complexity and difficulties in 
theoretical approaching. Thus, although the structure of the detonation wave is 
highly three-dimensional, many aspects can be studied by carrying out a 
one-dimensional analysis of a detonation wave.  
The main assumptions are: one-dimensional steady flow, constant area tube, the gas 
is an ideal one, having constant and equal specific heats, adiabatic conditions and 
body forces are negligible. 
The starting point in theoretical approaching is represented by the conservation 
equations of the mass, momentum and energy. Under above assumptions, these 
equations are represented by the relations (1)…(3). These equations are written for 
two states of the explosive, separated by the shock wave (Fig. 3). 

 

 
Fig. 3. Motion of the shock wave in a medium. 
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In the relations (1)…(3), indices 1 and 2 refer to those two states of the explosive 
(Fig. 3); ,,TP and h  are the state parameters: pressure, temperature, density and 
specific energy, respectively. 
 
2.1 Rayleigh Line 
 
By combining the relations (1) and (2), the following relation is obtained: 
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where V is the specific volume. In the plane VP  , the relation (4) represents a line 
named Rayleigh line, which goes through two points: point 1 of coordinates 11,VP  
(known parameters of state 1) and point 2 of coordinates 22 ,VP (unknown parame-
ters of state 2). For generalization, PP 2 and VV 2 and relation (4) becomes rela-
tion (5).  
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Because left hand side of equation (4) is always positive, two physically inaccessible 
domains exist as the Figure 4 shows (Strehlow, 1991). 
  

 
Fig. 4. Rayleigh line in the plane P-V. 
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Any thermodynamic state is represented by a point (with coordinates P and V) which 
lies on a single straight line (Rayleigh line). Because the energy has not taken into 
account and also any equation of state, the Rayleigh line does not represent a com-

plete solution of the considered problem. As the 2m  is the slope of the line, the 

Rayleigh line has two limit positions, for 02 m  and 2m , respectively, rep-
resenting the boundary of the inaccessible domains. 
 
2.2 Hugoniot Curve 
 
Using all those three equations, (1)…(3), and eliminating both velocities 1u  and 2u , 
the Hugoniot relation is obtained, in the form of relation (6). 

  211212 2

1
VVPPEE                                              (6) 

As the state 2 can be any one, we could write P instead 2P  and V instead 2V ;  so,  in  
the  same  plane (P-V), represented in the Figure 4, the relation (6) represents a curve 
named Hugoniot curve or often, just Rankine-Hugoniot curve (Fig. 5 and 6).  The 
relation (6) is written in terms of total enthalpy. 
The energy that is released during combustion process is absorbed by the system and 
rises its temperature. The real enthalpy-temperature relation can be approximated by 
working fluid-heat addition model (Strehlow, 1991); so, by simple arbitrary heat 
addition to the working fluid, using the relations: 

TcE p11                                                             (7) 

qTcE p  22                                                    (8) 

where 1pc  and 2pc  are the specific heat capacity of the explosive in the states 1 and 

2, q represents a simple heat addition to the flow, so the relation (6) becomes: 
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    Fig. 5  Hugoniot curve of unburned explosive.         Fig. 6 Hugoniot curves (burned and unburned 
                                                                                                              explosive). 
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In the relation (9),   is the ratio of specific heat capacity ( pc , vc ) for an ideal gas 

and q is a known parameter. Adopting this hypothesis, for calculus referring to 
TNT, the   value is 2.727. 
We have to notice that always 01 V  and 01 P , so the point 1 can be considered the 
origin of all explosive transformations. 1P  can be the athmospheric pressure, un-

derwater pressure and at its limit can be even zero, but never 01 V . As the Figure 6 
shows, the Hugoniot curve does not pass through the so-called origin ( 0q ). A 
complete representation, in the P-V plane, of the solution for a process represented 
by the equations (1)…(3) is presented in the Figure 7.  The Hugoniot curve is the 
locus of all possible solutions for the equations (1)…(3), or for the equation (9). The 
points where the Rayleigh line is tangent with Hugoniot curve defines the C-J points 
(Fig. 7): one above 1P  is C-J detonation point and other, below 1P , being the C-J 
deflagration point (points B and C respectively, Fig. 7). Intersections of the Rayleigh 
line with Hugoniot curve (points D, F, G, E, Fig. 7) define some points experimen-
tally grounded. Large discussions can exist around Rankine-Hugoniot diagram, but 
these are beyond of this paper. 
 
2.3 Detonation Theories 
 
The detonation process can be imagined as a shock wave moving through an ex-
plosive. The Chapman-Jouguet (C-J) theory is the main and the oldest detonation 
theory. This successfully is used nowadays, but next to it other theories appeared, 
like Zeldovich-von Neumann-Doering (ZND) theory and overdriven detonation 
(ODD) theory. All these theory are synthetically presented in the Figures 8…13.  

 

 
Fig. 7. Rankine-Hugoniot diagram. 
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Fig. 8. Pressure-specific volume in C-J theory.          Fig. 9. Pressure-distance in C-J theory. 

 

                   
Fig. 10. Pressure-specific volume in ZND theory         Fig. 11. Pressure-distance in ZND theory. 

 

                  
      Fig. 12. Pressure-specific volume in ODD theory.     Fig. 13. Pressure-distance in ODD theory. 

 
In accordance with Chapman-Jouguet (C-J) theory, detonation process is charac-
terized by a shock moving through explosive, so this is compressed and heated, 
initiating the chemical reaction. This process is considered to be instantly and all the 
time in an equilibrium and in a steady propagation in the explosive. In C-J condi-
tions, a complete release of the stored chemical energy occurs. C-J theory is based on 
some assumptions; among these, the shock wave is supposed to move at a speed of 
local sonic velocity. In equilibrium conditions, the moving velocity of the shock 
front has a minimum value.  
This velocity value is called detonation velocity or C-J velocity. So, the state behind 
the shock front is characterized by the C-J state.  
In accordance with Chapman-Jouguet (C-J) theory, detonation process is charac-
terized by a shock moving through explosive, so this is compressed and heated, 
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initiating the chemical reaction. This process is considered to be instantly and all the 
time in an equilibrium and in a steady propagation in the explosive. In C-J condi-
tions, a complete release of the stored chemical energy occurs. C-J theory is based on 
some assumptions; among these, the shock wave is supposed to move at a speed of 
local sonic velocity. In equilibrium conditions, the moving velocity of the shock 
front has a minimum value.  
This velocity value is called detonation velocity or C-J velocity. So, the state behind 
the shock front is characterized by the C-J state.  
 The Zeldovich-von Neumann-Doering (ZND) theory is a result of C-J theory de-
veloping. ZND theory accepts that the shock wave moves through explosive, but the 
shock wave compresses the explosive to a high pressure (much greater than C-J 
pressure), at which the explosive remains still unreacted.  This high pressure is called 
von Numman spike (vNS) and it is a characteristic parameter of von Numman spike 
point. According to ZND theory, the reaction begins at the spike point and finishes at 
C-J  point, reaching the equilibrium. The detonation products expand backward.  
In some conditions, the front of detonation wave can be highly compressed without 
any reaction. The maximum pressure in an explosive, without any reaction is con-
sidered to be the pressure value corresponding to von Numman spike (vNS). When 
an explosive is subjected to a higher pressure than that of vNS point, another deto-
nation pattern is considered to be induced.  
This detonation pattern is called strong detonation or overdriven detonation (ODD). 
In the case of overdriven model, the reaction starts at HPS pressure. In the C-J and 
ZND models, the propagation of detonation is viewed as a steady process, while in 
overdriven model, the propagation of detonation is an unsteady process. This reac-
tion finishes in ODD point, on Hugoniot curve of detonation products.  
 
2.4 Equations of State for Explosives 
 
For the calculus and analysis of the detonation waves and their effects as well, it is 
necessary to know the equations of state (EOS) of the explosive. There are some 
such of equations of state: polytropic ( law ) equation of state, Jones-Wilkins-Lee 
(JWL) equation of state, Becker-Kistiakowsky-Wilson (BKW) equation of state, 
Jones-Wilkins-Lee-Baker (JWLB) equation of state and others. A part of them are 
already implemented in the professional numerical programs (Ls-Dyna, Autodyn 
etc.), like as JWL and JWLB EOS. 
The most used equation of state is JWL EOS, which will be synthetically presented 
bellow. This EOS is obtained by combining of the isentropic equation of state with 
Mie-Gruneisen EOS for solids. The final form of JWL EOS is: 
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where 21,,, RRBA  and   are named JWL parameters, being constants which are 
experimentally determined for each explosive. The parameters  (density), h  
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(specific energy), Du (detonation velocity) and CJP  (Chapman-Jouguet pressure) are 
the input parameters, these depending on the taken into account explosive. For TNT 
these constants have the values presented in the Table 1. 
 

Table 1. JWL parameters of the TNT explosive 
  E  Du  CJP  A  B  1R  2R    

 
kg/m3 GJ/m3 m/s GPa GPa GPa - - - 

TNT 1630 7,00 6930 21,00 337,1 32,31 4,15 0,95 0,300 

 
As the JWLB EOS is concerned, it was developed in 1991 by Baker for describing of 
the high pressure regime produced by overdriven detonations. For many explosives, 
all the input data are presented in the technical literature. Being about the overdriven 
detonation, the output parameters obtained by using the JWLB equation of state are 
greater than those obtained using the JWL equation of state. 
Regardless the used EOS, any numerical model would have to be calibrated in re-
lation to the experimental results or some benchmarks. 
 
3. Analytical Calculus 
 
Starting from that one-dimensional model, an analytical calculus calculus can be 
carried out, based on the Chapman-Jouguet (C-J) theory. Here are some calculus 
relations, from literature [2], [5], [12], for detonation parameter calculus: 

a) the density 2  of the explosive, in the Chapman-Jouguet point ( CJ ): 

1
1 


 

CJ                                                   (11) 

b) the pressure 2P  in the C-J point ( CJP ): 

  1112 EPCJ                                                 (12) 

c) the specific energy 2E in the C-J point ( CJE ): 

11

2
EECJ 





                                                  (13) 

d) the sound velocity ( 2cc  ) in the C-J point ( CJc ): 

  CJCJ Ec  1                                              (14) 

e) the detonation velocity ( Du ):   

  1
2 12 EuD                                                 (15) 
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Such calculus relations are useful in the analysis process of the detonation, providing 
the quantitative results for comparing with the experimental results or with results 
obtained by other ways.  
In the Table 2, some results comparatively are presented, using different ways. The 
comparison is referring to the measured values and presented in many papers. The 
most known and referred paper is [2] and [3], where also some empirically or 
semi-empirically formulas are given. The results of the analytical calculus are based 
on the theory synthetically presented above, using the relations (10)…(13). 
 

Table 2. Comparative results. 
Analitycal Calculus 

 Measured  
Values 

Empirically 
Calculated 

Values C-J Theory JWL EOS 

CJP        [Pa] 2.10*1010  2.23*1010 2.42*1010 2.01*1010 

rE [%] 0.00 6.19 15.14 -4.14 

Du        [m/s] 6930 - 7435 - 

rE [%] 0.00 - 7.29 - 

 
By far, the numerical methods, like FEM and the newer SPH method are the most 
powerful, efficient and versatile methods, with great possibilities for post-processing 
of the results. 
 
4. Using of the SPH Method 
 
The theoretical fundamentals of SPH method are considered to be known [10], [11], 
[13]. The using of the SPH method will be presented for a given problem consisting 
in determination of the detonation parameters for 1 kg of TNT, pressed by not con-
fined, having a spherical shape. For a mass of 1 kg and a density of 1630 kg/m3, the 
calculated radius is 0.0527 m.  
In this paper, we present the results for a spherical shape of TNT because the theo-
retical studies and many experimental results were made, first of all, for this TNT 
shape. Next to this aspect, the results presented in this work are obtained in ideal 
conditions, like an explosive placed unconfined, in vacuum. 
We have to emphasize that the explosive shape together with boundary conditions 
has a great influence upon the detonation parameters and generally upon the explo-
sion parameters. What is presented here is useful for approaching of others explosive 
shapes, in different surrounding conditions. 
 
4.1 Numerical Models 
 
There are some numerical models for SPH method and for FEM, as well. For models 
having as small as possible number of nodes and elements, the present of symmetry 
has to be taken into account. From this point of view, the spherical shape has a lot of 
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symmetry planes. For a right and simplified model, the symmetry planes would have 
to be the same with coordinate planes.   
Considering the spherical explosive shape, for both two numerical methods (FEM 
and SPH), the simplest model is a 2D axisymmetric model. Such models are pre-
sented below (Fig. 14). Even this model type can be simplified, because it also has a 
symmetry axis (x-axis), like in the Figure 14, c) and e). 
For FEM analysis, a plane finite element with four nodes was used, with three finite 
element side dimensions: 1 mm, 0.50 mm and 0.25 mm. It is very interesting to 
notice how the finite element size influences the detonation parameters.  
The same three dimensions were adopted for the distance between particles in the 
case of SPH method. Next to it, different smoothing lengths were used, so their 
influence was put in evidence. 

 

         
                a)                             b)                             c)                               d)                           e) 

Fig. 14 2D axisymmetric numerical models with FE and SPH. 
 

In the case of using of the FEM (models presented in the Fig. 14-b and c), the 
boundary conditions are presented in the Figure 14-a. In the case of using of the SPH 
method (Fig. 14-d) no boundary conditions are necessary; for the model presented in 
the Fig. 14-e, for the particles lying on the x-axis, the Y-displacements have to be 
restricted. The lack of the boundary conditions for the SPH model (Fig. 14-d) comes 
from the theoretical formulation of the SPH method in the version of 2D 
axi-symmetric. Also, this aspect depend on how the particles were generated. Gen-
eraly, the such pre-processors don’t put the particles just on the boundary, but at half 
the internodal distance. 
 
4.2 Numerical Results 
 
Our results comparatively are presented, using SPH method and FEM. Each of these 
methods were used in three versions of the discretisation. This is referring to the inter 
nodal (particle) distance and respectively, to the finite element size. These charac-
teristics are presented in the Table 3. 

The numerical analysis was performed using Ansys/Ls-Dyna program; a 
dedicated material model (MAT_HIGH_EXPLOSIVE_BURN) was used, together 
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with JWL EOS. The used material constants are those presented in the Table 1. As 
the smoothing length is concerned (a very important parameter in SPH method), 
different values were used, inclusive the value automatically calculated by the pro-
gram. The analysis time was choosen of 1.00*10-5 seconds, as all the TNT mass to be 
totally burned.  

 
Table 3. The characteristics of the numerical models 

 Version_1 Version_2 Version_3 
 SPH_1 FEM_1 SPH_2 FEM_2 SPH_3 FEM_3 

Distance/Size    [m] 0.00100 0.00100 0.00050 0.00050 0.00025 0.00025 
Mass                 [kg] 0.9985 0.9992 0.9997 0.9993 0.9997 0.9993 
Nodes number 4410 4569 19012 18009 69268 71309 
Elements number 4410 4440 19012 17750 69268 70800 

 
The numerical results are referring to some very important parameters, which can be 
known for each particle or node, but these parameters can be represented like a pa-
rameter field, for all domain. 

 

        
        Fig. 15. The pressure field by SPH method.             Fig. 16. The pressure field by FEM. 

 
Figures 15 and 16 show a very good concordance between results obtained by SPH 
method and by FEM. Practically, at the same moment (4.3*10-6 s), the SPH maxi-
mum pressure (Fig. 15) differs by an error of 6.19% in relation to FEM maximum 
pressure (Fig. 16). As the resultant velocity is concerned, the same very good con-
cordance between values obtained by SPH method (Fig. 17) and by FEM (Fig. 18) 
exists; the error is only 1.12%. 
As the theory says and as the Figures 15…18 also show, the pressure and velocity 
evolve over time, especially in that zone of shock propagation.  
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The Figure 19 presents the pressure time evolution in five selected points (Fig. 20), 
which are placed along radius, having the coordinate y=0 (see Fig. 14). These points 
have the coordintes x in rising sense, towards the sphere center (x=0; y=0).  

 

               
 Fig. 17. The resultant velocity field, by SPH method    Fig. 18 The resultant velocity field, by FEM. 

 

 
 Fig. 19.  Pressure time evolution in some points of TNT. 

 
 

 
Fig. 20. Selected elements (particles) for studying of the pressure. 
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Fig. 21. Element mass/radian distribution.  

 

        
 Fig. 22.  Density field (SPH model).         Fig. 23. Partial view of density field at t = 5.0*10-6 s 

 

   
           Fig. 24. Density variation along the path                 Fig. 25. Pressure variation along the path 
                            at t = 5.0*10-6 s.                                                              at t = 4.3*10-6 s. 

 
As it was expected, the density is the same in all particles. After beginning of the 
burning (like in the Fig. 23), the density is modified; where the burning is over, the 

In the Figure 21, the element (particle) 
mass/radian distribution is presented. Looking 
at this figure, taken at the starting time when 
density is the same for all particles, we see a x- 
or radius-distribution, which is a right one for a 
2D axisymmetric model [18] (in reality, the 
particles have a variable volume, resulting a 
variable mass, owing to the 2D axisymmetric 
concept).  The using of the SPH method allows 
us to analyse some very important parameters 
of the detonation process. So, only a SPH 
model automatically can take into account the 
variation of the mass, the density and others. In 
the Figure 22, the density field at the analysis 
start time is presented.  
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density is lower than its initial values, in the shock wave the density is greater than 
its initial value and where the explosive is unburned the density has its initial value. 
Along the path presented in the Figure 23, the density has the variation versus dis-
tance, which is presented in the Figure 24. 
For the same path presented in the Figure 23, the pressure variation versus distance, 
at the analysis time of 4.3*10-6 s, is presented in the Figure 25.  
We can notice that behind the shock wave (where the maximum pressure occurs), 
the pressure goes down and in front of the shock wave the pressure has its initial 
values (in our case, zero).  

 

  
            Fig. 26.  Maximum pressure in a point                     Fig. 27. Maximum velocity in a point 
                             versus smoothing length.                                          versus smoothing length. 

 
Among the parameters of the SPH method, the smoothing length (h) is one of the 
most important one. This parameter has a great influence upon the results and even 
computer time as well. Until now, the smoothing length has no dedicated value for 
an analysis type etc. There are some general recommendations [11], [13] which 
could have to be taken into account. The user is helped by an available option of the 
program as this automatically to choose the smoothing length and this to be a vari-
able one [11], [13]. The influence of the smoothing length upon numerical results is 
presented in quantity in the Figures 26 and 27. 

 
Table 4. Comparison of the numerical results with experimental and analitycal results. 

Analitical Results Numerical Results by SPH 
Method  Measured 

Values 

Empirical 
Calculated 

Values Theoretical JWL SPH_1 SPH_2 SPH_3 

CJP     [MPa] 21000 22300 24200 20100 21460 24600 27900 

rE [%] 0.00 6.19 15.14 -4.14 2.19 17.14 32.85 

Du         [m/s] 6930 - 7435 - 7094 6161 6503 

rE [%] 0.00 - 7.29 - 2.37 -11.10 -6.16 

CJ   [kg/m3] - - 2228 - 2250 2372 2433 

rE [%] - - 0.00 - 0.99 6.46 9.20 

 /0V  - - 0.732 - 0.724 0.687 0.670 
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So, it is necessary that the SPH method to be calibrated by analysing the numerical 
results with experimental results, or with the benchmark results, or/and with the 
analytical (theoretical) results. 
The numerical results, obtained by using of the SPH method and presented in this 
paper, are based on the calibration of the SPH method by comparison the numerical 
results with the experimental and theoretical results. As the smoothing length ( h ) is 
concerned, for SPH_1 version we used automatical determination by the program, 
for SPH_2 and SPH_3 versions, the smoothing length was constant, having the value 
1.50 and 2.50 respectively.  
 
5. Conclusions 
 
The phenomenon of the detonation is a very complex one, which can be analysed for 
improving of its parameters, for the sake of improving of its effects upon structures. 
Nowadays, the explosives are used in many civil activities like controlled building 
demolition, in mechanical technology like explosion plating, welding, hardening, 
controlled plasticization of tubes and others. 
The appearing and using of the SPH method offer us a new, efficient and versatile 
tool for numerical analysis of the fluids and structures. For numerical analysis of the 
detonation process, the SPH method is a very good one not only for results in a good 
concordance with the experimental results, but for its new parameters which can be 
analysed, like density variation, volume and mass variations etc. A great advantage 
of the method consists in avoiding of the difficulties coming from large deforma-
tions and great nonlinearities. 
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