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Abstract. The discrete-time optimal control law denoted fhan is often used in practical 

implementations as well as in the research field of control systems. The present paper 

shows that by reevaluating the design conditions, the control loop driven by fhan achieves a 

permanent oscillating regime instead of a stable state. Under these circumstances, the fhan 

control law becomes a suboptimal solution. To further improve the behaviour, a 

complementary control action is proposed based on the proper discrete-time model of the 

double-integrator plant in order to eliminate the oscillating regime and stabilize the control 

loop. The effects of the proposed solution are illustrated through examples. From the 

practical point of view, implementing the solution is immediate because only the resources 

needed for the implementation of fhan control law are used. 

 

Keywords. fhan control law, discrete-time optimal control, suboptimality, double-

integrator plant, discretization methods of time-continuous linear systems. 

 

1. Introduction 
 

One of the themes developed during the pioneering age of optimal control is the 

time optimal control of continuous-time processes [1], [2]. The use of digital 

technologies has led to the adaptation of the problem for optimal control of 

discrete-time systems. Generally, the methods developed for both categories of 

systems have led to solutions that can be implemented only by applying numerical 

methods. For some continuous-time processes, modeled as continuous-time 

systems, analytical solutions were obtained. Such a case is the double integrator 

system used as an elementary model for positioning systems [3].  

In 2004, in the paper [4] was published a control law with important scientific and 

practical resonance, often called fhan. Essentially, the great scientific impact 
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should be associated with a lot of papers published by Jingqing Han and his 

collaborators [5], [6]. 

Our paper discusses the optimality of the solution in [4]. The conclusion is that in 

fact fhan leads to a suboptimal control but can be improved. 

This paper is organized as follows: in Section 2, the time-discrete control law fhan 

is presented. Discretization methods of time-continuous systems applicable to the 

time optimal control problem are briefly exposed in Section 3. The optimality of 

fhan is discussed in Section 4. A solution for improving the behaviour of fhan 

control law in permanent regime is proposed in Section 5. Finally, some 

conclusions are drawn in Section 6.  

 

2. The control law fhan 

 

Fhan is the non-linear discrete-time control law (2) that replaces the time optimal 

control of the continuous-time double-integral plant (1) for a sampling time h. The 

control law fhan is implemented through the state feedback control loop in Fig. 1a. 
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According to the paper [4] the control law (2) was designed considering the plant 

(1) via the linear discrete-time realization 
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considering the control loop from Fig. 1b. In the sequel this control loop is denoted 

by Sd (in some figures as „sd”). 

 

Note: In [4] the expression of u[k] in (2) is denoted by fst. In [6] and then in the 

numerous papers citing this article the function with which the values u[k] are 

calculated is denoted by fhan. 
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Fig. 1. Regarding the implementation (a) and design (b) of the discrete-time control law fhan 

 

3. Some aspects about the discretization methods of continuous-time linear 

time-invariant systems 

 

The continuous-time differential equations used as mathematical models for linear 

time-invariant systems are discretized, by transforming them into discrete 

difference equations used as mathematical models for discrete-time linear time-

invariant systems. Regarding this issue and in respect to discrete-time controllers, 

articles [7] and [8], published by H. Hanselmann, are of real importance. 

Let u(t) be the input signal of a continuous-time linear time-invariant system S and 

{u[k]}kN, u[k]=u(kh) the corresponding discrete-time signal obtained by using a 

constant sampling period h. The discretization methods of S depend on the shape of 

u(t). In the control systems theory are for interest two cases: i) u(t) is a staircase 

function with steps at the sampling moments; ii) u(t) is a finite values function that 

does not belong to the staircase function class. 

The first case is well known through the following result [9]: the discrete-time 

system corresponding to the continuous-time linear time-invariant system 
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This result has a very important consequence: If u(t) is a staircase function with 

steps of length h or a multiple of h, and {u[k]} is the corresponding discrete-time 

signal obtained by sampling u(t) at instants kh, then the responses of systems (5) 

and (6) coincide in every sampling instant. In this context the system (6) was 

named invariant realization to step signal of system (5) [6]. 

Applying formulas (7) to system (1), instead of system (4), system (8) is obtained:
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In the second case, because it is impossible to obtain invariant realizations, the 

discrete-time models are obtained using approximations methods, namely 

numerical methods for integro-differential equations. The most important methods 

are based either on the approximation of the derivation operation over time (ii-1) or 

on the approximation of the integration operation over time (ii-2).  

There are a lot of approximation rules that belong to ii-1. From the numerical 

differentiation methods the most common method consists in using the formula (9) 

known as Newton’s difference quotient or as first-order progressive approximation 

of the derivative (forward difference). In (9) x is a scalar variable. 
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Using the above in (1) formula the discrete-time system (4) is obtained. 

The methods ii-2 belong to the so called substitution methods. Under this name are 

gathered: backward Euler method, Tustin method (or trapezoidal rule) and forward 

Euler method. All this methods approximate the integral in the second equality 

from (10) in different manners. The variables in (10) are scalars. 
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4. Discussion 

 

In practical implementations of a digital controller the control signal u(t) applied to 

the input of a continuous-time plant is a staircase function. In simulink this signal 

corresponds to the output of a zero order holder. 

Consequently, in the case of numerical control of the plant (1), the control signal 

will be a staircase function, and to investigate the behaviour of the resulting 

discrete-time control system the model (8) of the plant must be used. The 

corresponding control loop is shown in Fig. 2 and will be further denoted by Sr (in 

some figures „sr”). Because fhan was designed by taking into account the model 

(4) for the plant, instead of model (8), fhan cannot be considered as a „discrete-



 

 

 

 

 

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 4/ 2018 

 

 

 

 

 

 

355 

time optimal control law”, but as a „discrete-time suboptimal control solution”. 

Two issues must further be highlighted. 

 

 

Fig. 2. The control loop Sr. 

 

The suboptimal character explains the success of fhan control law in practical 

applications. The basic structure discussed in [9] has a wide application potential. 

Although the structure Sd, composed of plant model (4) and controller (2), is 

theoretical, its behaviour can be imposed as a reference model for many control 

loops. Trying to redesign the control law fhan by operating with the plant model 

(8), we find that this it is no longer possible. The rigorous reasoning of [4], based 

on isochronic regions, can no longer be repeated. The isochronic regions 

corresponding to the model (8) are no longer so easy to manipulate as in [4]. Also, 

from a mathematical point of view there is no longer the possibility of simplifying 

the amounts that arise as the operating point of the system moves into the state 

plane. 

Naturally, we have to ask what tribute is paid to the suboptimal character of control 

law. Because fhan is a nonlinear controller a rigorous analysis of the control system 

Sr, composed of (2) and (8), seems to be rather difficult and is beyond the purpose 

of this work. Therefore, in this paper we will limit ourselves to observing a single 

consequence. The chosen scenario is very simple: we compare the behaviour of the 

system Sd with the behaviour of the system Sr via their free responses (zero-input 

responses) for different initial conditions. The first control loop, corresponds to the 

situation for which Fhan was designed. The related signals are drawn in dotted line. 

The second situation corresponds to fhan's real operating situation. The signals are 

drawn in continuous line. Both system should be stable. Also, finally they should 

reach the origin x1=0, x2=0. 

Figures 3 and 4 illustrate the behaviour of the systems Sd and Sr for different initial 

conditions (x1(0) and x2(0)), and different values of r (the maximum absolute value 

of the control signal), but for the same h (h = 0.1 s).  
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Fig. 3. Case A: x1(0)= -5; x2(0)= -6; r=30; h=0.1 s. (dotted line for sd, continuous line for sr) 

 

Fig. 4. Case B: x1(0)= 5; x2(0)= 6; r=12; h=0.1 s. (dotted line for sd, continuous line for sr) 

 

In general, the system (1), the double-integrator, is known as the positioning 

system. The variable x1 means position (for translational or rotational motion), the 

variable x2 means velocity, and the variable u means force or torque. This 

interpretation simplifies the understanding of the results. 
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All figures illustrate that both systems, after a transient regime, get into a 

permanent regime. No significant differences in the transient regime are present. A 

major difference, however, occurs in the permanent regime. For the system Sd the 

control u(t) finally stabilizes to u = 0, whereas for the system Sr the control does 

not stabilize but reaches a permanent oscillating regime with the frequency f = 5 

Hz. Naturally, the oscillations appear also in the state variables, but at the chosen 

scale of representation in the four figures they are not visible. 

Intuitively, we realize that the oscillation frequency depends on the value of the 

sampling period h. Fig. 5 illustrates what happens in a new case C, when h is 

modified to 0.01 s. The oscillation frequency increases to f=50 Hz.  
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Fig. 5. Case C: x1(0)= 5; x2(0)= 6; r=2; h=0.01 s. (dotted line for sd, continuous line for sr) 

 

If h is further reduced to h=0.001 s the oscillation frequency rises to 500 Hz. 

Empirically, the equation hf = 0.5 seems to be valid. 

 

5. Improving the behaviour in permanent regime 

 

The behaviour of control loop Sr (Fig. 2) in permanent regime can be improved 

based on the model (8). Let us note the values of x1, x2 and u for two consecutive 

instants k and k + 1 with 
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We call these equations "one-step transition equations". If the transition in one step 

finishes with the attainment of the origin x11=0 and x21=0, we call this the "last 

transition". 

Now, we focus on designing a two-step control sequence    u[1]u[0],u[t]   
capable of driving the system (8) from an initial arbitrary state, x1(0), x2(0), to the 

origin. 



 
 
 
 
 
 

Dragomir T.-L. and Câmpeanu A./ Improving the behaviour a suboptimal … 

 

 

 

 
 

 

 

 

358 

According to equations (12) through an one-step transition generated by u0 the 

system (1) reaches the new state T
2111 ]x,x[

 
starting from the state T

2010 ]x,x[ . The 

new state corresponds to a line segment located on the line (d0) of equation (14), 

located between the border points ( x11-,x21-) and ( x11+,x21+), where: 
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When T
2111 ]x,x[ is the origin, from (14) and (15) results the line segment (16) 

shown in Fig. 6, bordered by the points P1- and P1+. The line segment [P1-P1+] is 

denoted as domain D[1]. 
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Fig. 6. The domain D[1] represented by the line segment [P1-P1+]. 

 

From any point ]PP[]x,x[ 11
T

2010   
the origin can be reached applying the control: 

200 x
h

1
u    .   (17) 

Following the same reasoning for T2T
2111 ]rh,rh5.0[]x,x[   (i.e. for point P1-) 

and for T2T
2111 ]rh,rh5.0[]x,x[   (i.e. for point P1+), the segments 

]PP[]x,x[ 22
T

2010  , and ]PP[]x,x[ 22
T

2010  respectively are obtained (Fig. 

7). The corresponding coordinates are: 

hr

an

alo

g-

to- 
Fo

r 

im

ple

me

nta

tio

n, 

the 

sc

he

ma 

of 

Fi

g. 

10 

is 

us

ed.

di

git

al 

co

nv

ert

er 

-hr 

0.5h2r 

x1 

x2 

O 

P1_ 

P1+ 

-0.5h2r 



 

 

 

 

 

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 4/ 2018 

 

 

 

 

 

 

359 


































0x

rhx
:)P(,

rh2x

rh2x
:)P(,

0x

rhx
:)P(,

rh2x

rh2x
:)P(

2

2
1

2

2

2
1

2

2

2
1

2

2

2
1

2

 
 (18) 

Let D[2] be the domain comprising the parallelogram [P2--P2+-P2++P2 -+] and its 

interior Because the points P1- and P1+ are located on the sides [P2 - -P2 + -] and [P2 -

+P2++] of the parallelogram: 

D[1]  D[2] .           (19) 

D[2] \ D[1] represents the set of states from where D[1] can be reached in one step, 

and consequently from where the origin can be achieved in two steps. Generally, 

the state T
2111 ]x,x[  , corresponding to a point Px, can be achieved from any point 
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Fig. 7. The domains D[2] and D[1] 
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Note that in terms of s the first equation in (16) becomes s=0. 

The above formulas allow the adjustment of the control law (2) based on the rule 

base (23). The first two rules assure the convergence of the state x(t) to the origin, 

while the third rule conserves the very good transient behaviour determined by 

applying the control law fhan:  
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For implementation, the schema of Fig. 8 is used. Using a switch, the decision 

block implements the three rules in (23). 

 
Fig. 8. Implementation of control strategy (23) 
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The results from implementing this strategy are illustrated in Fig. 9 and Fig. 10. 

The transient regimes obtained applying the control law (24) are denoted with Sr-c. 
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Fig. 9. Case A: x1(0)= -5; x2(0)= -6; r=30; h=0.1 s. (dotted line for sr, continuous line for sr-c) 

 

Fig. 10. Case B: x1(0)= 5; x2(0)= 6; r=12; h=0.1 s. (dotted line for sr, continuous line for sr-c) 

 

These results show clearly that fhan (rule 3) brings the system to the neighborhood 

of origin until the correction actions (rule 1 and rule 2) are activated and the system 

0 0.5 1 1.5 2 2.5
-6

-5

-4

-3

-2

-1

0

1

seconds

x1 sr
x1 sr-c

0 0.5 1 1.5 2 2.5
-10

-5

0

5

10

15

seconds

x2 sr-c

x2 sr

0 0.5 1 1.5 2 2.5

-30

-20

-10

0

10

20

30

seconds

u sr-c
u sr

0 0.5 1 1.5 2 2.5 3
-1

0

1

2

3

4

5

6

7

seconds

x1 sr-c x1 sr

0 0.5 1 1.5 2 2.5 3 3.5 4
-10

-8

-6

-4

-2

0

2

4

6

seconds

x2 sr

x2 sr-c

0 0.5 1 1.5 2 2.5 3 3.5 4
-15

-10

-5

0

5

10

15

seconds

u sr
u sr-c



 
 
 
 
 
 

Dragomir T.-L. and Câmpeanu A./ Improving the behaviour a suboptimal … 

 

 

 

 
 

 

 

 

362 

is then brought to origin. Than, the system is maintained in equilibrium without 

oscillating of control signal. 

 

6. Conclusions 

 

If the discreet-time nonlinear control law fhan, conceived as an optimal time 

control for a double-integrator, is verified on the invariant realization to step signal 

of the double-integrator, it is found that instead of a steady-state regime, i.e. a 

stable regime, a permanent oscillating regime occurs. This behaviour is due to the 

design of the fhan control law for a discrete-time model that only approximates the 

behaviour of the double-integrator plant. Therefore, fhan should be considered only 

a suboptimal control law. 

To improve the behaviour of the control loop by eliminating the permanent 

oscillating regime, fhan is combined with a two-step control acting around the 

origin (equilibrium state). The two-step control algorithm is easily obtained using 

the invariant realization to step signal of the double-integrator. The solution can be 

implemented with the same effort like fhan. 
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