
Journal of Engineering Sciences and Innovation 
Volume 3, Issue 3 / 2018, pp. 265 - 290 

 
  Technical Sciences 
Academy of Romania                                        E. Electrical and Electronics Engineering 

       www.jesi.astr.ro  
Received 10 July 2018  Accepted 14 September 2018 
Received in revised from 3 August 2018 

 
Numerical solution of algebraic Riccati equations by 

Newton's method 
 

VASILE SIMA* 

 
National Institute for Research & Development in Informatics, 8–10 Bd. Mareşal Averescu, 

Bucharest, Romania 

Abstract. Improved Newton solvers, with or without line search, for both continuous- and 
discrete-time algebraic Riccati equations (AREs) are discussed. The basic theory and 
conceptual algorithm are briefly presented. Algorithmic details, computational steps, and 
convergence tests are described. The main results of an extensive performance investigation 
of the Newton solvers are summarized and compared with those obtained with the widely-
used MATLAB solvers, care and dare. Randomly generated systems with orders till 2000, as 
well as the systems from the large COMPleib collection of examples, are considered. 
Significantly improved accuracy, in terms of normalized and relative residuals, and 
sometimes greater efficiency than for care/dare have been obtained. The results strongly 
recommend the use of Newton solvers, especially for improving the solutions computed by 
other solvers. 
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1. Introduction 

The numerical solution of algebraic Riccati equations (AREs) is a basic 
algorithmic step in many computational methods for model reduction, filtering, 
spectral factorization, linear quadratic optimization, HH2  robust control, and 

other domains. Let TQQ  , A, nnRE  , B, mnRS   and mmT RRR  , with 
E nonsingular, and superscript T denoting the transpose. The generalized 
continuous- and discrete-time AREs (CAREs and DAREs), can be defined by 
  0XR , where 
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 , (1) 

, (2) 

respectively, where , the operator , borrowed from numerical 

linear algebra, represents either M or MT, R or , respectively, are assumed 
nonsingular,  

, 

 
and  is unknown. The use of plus sign in front of the last term in 
(1) and (2) allows to solve more general symmetric matrix equations. For an 

optimal regulator problem, the operator  is , while for an 

optimal estimator problem , input matrix B is replaced (by duality) 

by the transpose of the output matrix , and m is replaced by p. Often Q 

and S are given as  and , respectively.  

The solutions of an ARE are the matrices X for which the residual  is zero. 
Often, a stabilizing solution, XS, is sought, so that the matrix pair 

 is stable, where 

,  for CARE,     ,  for DARE, (4) 

and  is the gain matrix of the optimal regulator or estimator. 
There is an overwhelming literature concerning AREs and their use for solving 
optimal control and estimation problems; see, e.g., the monographs [1] – [4] for 
many theoretical results. An integral quadratic performance index in terms of the 
system state and input of a linear system is used as an optimization criterion for a 
control problem. The optimal solution, which minimizes this criterion, is expressed 
as a state-feedback control law and it stabilizes the system. Briefly speaking, this 
control law achieves a trade-off between the regulation error and the control effort. 
The optimal estimation or filtering problem, for systems with Gaussian noise 
disturbances, can be solved as a dual of an optimal control problem, and its 
solution gives the minimum variance state estimate, based on the system output. 
The results of an optimal design are often better suited in practice than those found 
by other approaches. For instance, pole placement (or assignment) may produce 
large gain matrices, hence high-magnitude control inputs, which might not be 
acceptable in practice. Solving AREs is also a major computational step in H  
robust control theory (e.g., [5]). A recent extended hystorical perspective of scalar 
and matrix (differential) Riccati equations is given in [6], which also mentions 
several domains of the control system theory where these equations appear, and 
includes an extensive bibliography. As a proof of the ubiquity of AREs, it is worth 
mentioning that in [7], an individualized model predictive control (MPC) for the 
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artificial pancreas has been investigated, where the moving horizon performance 
index contains a „final” state term defined by the solution of a DARE. Therefore, 
AREs are now appearing also in applications for the medical domain. 
Due to their importance, numerous numerical methods have been proposed for 
solving AREs; see, for instance, [4,8] and the references therein. There are also 
several software implementation, e.g., in MATLAB [9], or in the SLICOT Library 
[10] – [13]. There are both direct and iterative algorithms for solving AREs. The 
first class includes the (generalized) Schur techniques, e.g., [14] – [17]. These 
algorithms use a basis of the stable invariant or deflating subspace of a structured, 
Hamiltonian (for CAREs) or symplectic (for DAREs) matrix (of size 2n) or matrix 
pencil (of size 2n or 2n+m). The state-of-the-art MATLAB functions care and dare, 
and several SLICOT routines implement such algorithms. Relatively recent 
research, including both theoretical and numerical investigation, has been directed 
to exploit the Hamiltonian or symplectic structure of the eigenproblem associated 
to the ARE [18] – [22]. The second class of algorithms has several categories, 
including matrix sign function techniques, e.g., [23, 24], Newton techniques, e.g., 
[14, 25], doubling algorithms, e.g., [26,27], or recursive algorithms, e.g., [28]. In 
particular, [28] addresses CAREs with indefinite quadratic term; the stabilizing 
solution is found as the limit of solutions of a sequence of CAREs with definite 
quadratic term.  
Newton's method for solving AREs has been investigated by many authors, for 
instance, [3, 4, 8], [29] – [31]. Moreover, the matrix sign function method, [23, 24, 
32, 33], uses a specialized Newton's method to compute the square root of the 
identity matrix of order 2n. Newton's method has also been applied in [34] for 
solving special classes of large-order CAREs, using low rank Cholesky factors of 
the solutions of the Lyapunov equations built during the iterative rocess [35]. 
Additional numerical results, for randomly generated systems with 600n , and 
comparison with MATLAB and SLICOT solvers are presented in [36].  However, 
these specialized solvers require the assumptions that matrix A is structured or 
sparse and the CARE solution has rank much smaller than n. (The possibly sparse 

structure of A, and operations of the form Ab or bA 1 , with nRb , are used.)  
Newton's method is attractive as an ARE solver due to several reasons. A main 
reason is its quadratic convergence in the neighbourhood of an ARE solution. 
Moreover, with a stabilizing matrix 0X , all Newton iterates and their limit are 

stabilizing. In addition, the computational effort per Newton iteration (for dense 
matrices) is expressed as a cubic polynomial in n and m, while for the best 
direct algorithms the effort is defined by a cubic polynomial in 2n (or 

mn 2 ) with significantly larger coefficients. Therefore, if convergence is 
obtained, say, in less than 10 iterations, Newton algorithms are competitive with 
the direct ones. Another main reason is the improved accuracy which can be 
obtained.  
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One drawback of the Newton's method is its dependence on the initial matrix used, 

0X . This matrix should be stabilizing, i.e.,  should be 

stable, in order to compute the stabilizing solution SX . Finding a suitable 0X  can 

be a difficult task. Stabilizing algorithms have been proposed, mainly for standard 
systems (with nIE  , where nI  is the identity matrix of order n), e.g., in [25, 31, 

37, 38]. However, often these algorithms produce a matrix 0X  with a very large 

norm. Consequently, the following iterates, kX , ,2 ,1k , computed by the 

Newton's method, could also be large, and the iterative process might need many 
iterations before convergence, or encounter numerical difficulties. For this reason, 
Newton's method is best used for iterative improvement of a solution returned by 
other solver, or as defect correction method [39], delivering the maximal possible 
accuracy when starting from a good approximate solution. Moreover, it is preferred 
in implementing certain fault-tolerant systems, which require controller updating, 
see, e.g., [40] and the references therein.  
This paper describes a general solver for CAREs and DAREs, developed by the 
author (based on [29, 30]), which can solve moderately large dense problems (e.g., 

1000n ). The basic theory, conceptual algorithm, and the main implementation 
details are summarized. The solver has extended functionality and good flexibility, 
reliability, and efficiency. Its performance has been proven by the numerical results 
obtained on randomly generated systems and on systems from the COMPleib 
collection [41]. Preliminary results have been reported in [42]. Some results for 
CAREs are included in [43] – [46] and for DAREs in [44, 47, 48]. How 
computations can be organized in an iteration for improving efficiency was 
investigated in [49]. 
The paper compares the performance of the Newton solvers with or without line 
search (briefly called as modified and standard Newton solvers, respectively) with 
the performance of the state-of-the-art commercial solvers care and dare from 
MATLAB Control System Toolbox. The MATLAB solvers use a (generalized) 
eigenvalue approach, based on the results in, e.g., [14, 15, 17]. 
The organization of the paper is as follows. Section 2 starts by summarizing the 
basic theory and Newton algorithm for CAREs and DAREs. Section 3 discusses, in 
separate subsections, some algorithmic and implementation details: computation of 
the Newton step size, convergence tests, iterative process, etc. Section 4 presents 
the main results of an extensive performance investigation of the solvers based on 
Newton's method, in comparison with the MATLAB solvers care and dare. 
Randomly generated systems with order till 2000, as well as systems from the 
COMPleib collection [41], are considered. Section 5 summarizes the conclusions. 

 
2. Basic theory for Newton-based ARE solvers 

The algorithm discussed in the sequel is a modification of Newton's method, 
employing a line search procedure to minimize, for CAREs, and reduce, for 
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DAREs, the residual along the Newton direction. The conceptual algorithm is 
stated as follows: 
Algorithm N: Newton's method with line search for an ARE 

Input: The matrices E, A, B, Q, R, and S, and an initial matrix TXX 00  . 

Output: The approximate solution Xk of CARE for (1) or DARE for (2).  

FOR , DO 
1. Compute  kXR . If convergence or non-convergence is detected, return Xk 

and/or a warning or error indicator value. 
2. Compute  with (4), and , where 

.  
3. Solve in kN  the continuous- or discrete-time generalized Lyapunov 

equation, (5) or (6), for CARE or DARE, respectively, 

 , (5) 

 . (6) 
4. Find a step size tk which minimizes (with respect to t), for CARE, or 

reduces, for DARE, the squared Frobenius norm of the next residual, 

  
5. Update . 

END 

The usual, „standard” Lyapunov equations have nIE  . Equation (6) is also called 

generalized Stein equation. Note that the SLICOT Lyapunov solvers used can 
directly work with . Since , matrix A is not 

actually transposed even if , while  is similarly obtained 
with no transposition by using a suitable call to the matrix multiplication 
subroutine DGEMM from Basic Linear Algebra Subprograms (BLAS) [50]. 
(Explicit matrix transpositions should be avoided in computations.)  
Standard Newton algorithm is obtained by taking 1kt  in Step 4 at each iteration. 

When the initial matrix 0X  is far from a Riccati equation solution, the modified 

Newton's method, with line search, often outperforms the standard Newton's 
method.  
In theory, the following assumptions are needed. 
Assumptions A: 

1. Matrix E is nonsingular.  

2. Matrix pair  is stabilizable. 
3. Matrix R is positive definite  0R  for CAREs and nonnegative definite 

 0R  for DAREs. 

4. A stabilizing solution SX  exists and it is unique.  
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Note that Assumption 1 is not actually used by the developed solver, contrary to 
some other solvers (including MATLAB functions care and dare). 
The basic properties for the standard and modified Newton algorithms for AREs 
can then be stated as follows [29]: 
Theorem 1 (Convergence of Algorithm N, standard case) If the Assumptions A 

hold, and 0X  is stabilizing, then the iterates of the Algorithm N with 1kt  satisfy 

(a) All matrices kX  are stabilizing. 

(b) . 
(c) . 
(d) Global quadratic convergence: There is a constant 0 such that 

  ,     (7) 
Note that (7) does not hold for 0k , involving the iterates 0X  and 1X . 

Theorem 2 (Convergence of Algorithm N for CAREs) If the Assumptions A 
hold, 0X  is stabilizing,  is controllable and 

, for all 0k , then the iterates of the Algorithm N for CARE satisfy 
(a) All iterates kX  are stabilizing. 

(b)  and equality holds if and only if 
. 

(c) . 
(d) . 
(e) In a neighbourhood of SX , the convergence is quadratic. 

(f) . 

Theorem 2 does not ensure monotonic convergence of the iterates kX  in terms of 

definiteness, contrary to the standard case (Theorem 1, item (b)). On the other 
hand, under the specified conditions, Theorem 2 states the monotonic convergence 
of the residuals to zero, which is not true for the standard algorithm. Numerical 
experiments support the conjecture that Theorem 2 also holds under the weaker 
assumption of stabilizability instead of controllability. 
Weaker results are available for the modified Newton algorithm for DAREs. One 
such result [29] states that if kX  is stabilizing, then kN  computed by Algorithm N 

is a descent direction for  from kX , unless Sk XX  .  

 
3. Algorithmic and implementation issues 
 
Algorithm N and the implemented solver deals with generalized AREs without 
inverting the matrix E. This is very important for numerical reasons, since E might 
be ill-conditioned with respect to inversion, so that large perturbations in the 
data used might be introduced from the beginning of the calculations. The 



 
 
 
 
 
 

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018 
 

 
 
 
 
 
 

271 

implementation calls routines from SLICOT Library [11, 13, 51] (www.slicot.org), 
as well as from LAPACK [52] (www.netlib.org/lapack/) and BLAS, see [50] and the 
references therein (www.netlib.org/blas/). Standard AREs are solved with the 
maximal possible efficiency, using suitable customization in the called routines. 
(Even if a request to solve a generalized ARE is made, the solver checks out if E 
happens to be identity and a standard ARE is efficiently solved if nIE  ). 

Moreover, both control and filter AREs can be solved by the same solver, using an 
option („mode”) parameter, which specifies the op operator. The matrices A and E 
are not transposed. It possible to also avoid transposing C, for the filter equation, 
but this is less important and more difficult to implement at the SLICOT Library 
level, since some existing lower-level routines do not directly cover the transposed 
case. But this issue was solved at the upper level, in the executable function. 
Symmetry is used whenever possible. Common subexpressions of matrix products 
are evaluated only once, and the sequence of multiplications is optimized, 
depending on the n and m values. A new block algorithm is used for computing the 

matrix product MN, when the result is symmetric (e.g., when , and 

).  
The essential computational procedures involved in Algorithm N will be detailed 
below. 

 
3.1. Removing S matrix 

  
Any CARE (1), but also any DARE (2) with nonsingular R, can be rewritten in a 
simpler form, which is more convenient for Algorithm N. Specifically, setting  

 ,  (8) 

after redefining A  and Q as A
~

 and Q
~

, respectively, then (1) and (2) reduce to 

 , (9) 
 

 ,(10) 
respectively, where 

 ,    . (11) 
Simpler forms are obtained in the standard case  nIE  . The tilde 

transformations in (8) eliminate the matrix S from the formulas to be used by 
Newton's algorithms. It is more economical to solve AREs for (9) or (10) than for 
(1) or (2), respectively, since otherwise the calculations involving S must be 
performed at each iteration. In this case, the matrix kK  is no longer computed in 

Step 2, and kA  is given by 

,   for CARE, 

 ,    ,   for DARE.  (12) 
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Since R was assumed positive definite, the Cholesky factor cR  of R (i.e., 

, with cR  upper triangular), can be used to obtain A
~

 and Q
~

 in (8). 

Defining  and  , the relations (8) are equivalent to 

 , (13) 
so just two triangular sets of systems with the same coefficient matrix, cR , should 

be solved, and two matrix products should be computed for obtaining A
~

 and Q
~

, 
after factoring R. This is done before starting the iteration loop in Algorithm N. 

Symmetry is exploited for getting Q
~

 via a BLAS [50] symm operation. 

When  R  is not positive definite, then either  or  factorization [53] of  

R can be employed for computing A
~

 and Q
~

. Similarly, /  

factorization of  can be used for obtaining kĜ , when  is indefinite. 

This may happen for DAREs during the iterations of Algorithm N, even if 0R .  
 

3.2. Using factored G or kĜ  matrices  

 

When m is smaller enough than n  ( cnm  , where 
4

3
c , for a CARE, or 

5

3
c , 

for a standard CARE), a factorization of G can be used instead of G during the 

iterative process. Specifically, with the notation above, , and so, 

. 

Similarly, if , then the Cholesky factor of , , and a 

factorization of kĜ  can be used for DARE, if cnm  , with 
4

1
c . Defining 

, then , . 

If kĜ  is to be preferred (since cnm  ), but the norm of 0Ĝ  is too large, then, if 

possible, the factor kB
~

 is used in the iterative process instead of kĜ , in order to 

potentially improve the numerical behavior, even if the efficiency somewhat 
diminishes. 
 
3.3. Using S matrix 

 
When 0S , but R is ill-conditioned with respect to inversion, the use of formulas 
(8) will potentially introduce large errors from the beginning of Algorithm N, 
which will be propagated over the entire iterative process, possibly resulting in 
slower convergence, and/or an inaccurate computed solution. Using S  during the 
iterations could avoid such degradation. Therefore, an option of the solver allows 
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to avoid the transformations (8), and involve S in all subsequent calculations. In 

this case, other formulas are needed, since G or kĜ  cannot be used. Specifically, 

define 

 for CARE, (14) 

 for DARE,(15) 

with cR  and  kc XR̂  introduced above; it is assumed here that   0ˆ kc XR  for 

computing kF  in (15). (  kH is a convenient notation for  kXL  Then, the residual 

 kXR  and the matrix  kAop  can be computed using 

,  (16) 

 ,    for CARE,  (17) 

, (18) 

 ,    for DARE,  (19) 

where B
~

 and kB
~

 have been defined above.  

If, however, R  or  kXR̂  is (numerically) indefinite, then the needed formulas 

follow directly from (2) – (4), namely, 

, (20) 

, (21) 

 ,  (22) 

involving TUDU  or TLDL  factorization of R or  kXR̂ . Moreover, symmetry of 

the matrix product kk KH  is taken into account, since the solver computes either 

the upper or lower triangle of  kXR .  

The implementation is optimized by using common subexpressions when 
computing  kXR  and  kAop , taking also into account the ratio between n and 

m. The formulas used and their proofs are given in [49]. 
 
3.4. Initialization and main options 
 
The iteration is started by an initial (stabilizing) matrix 0X , which may not be 

given on input,  if the zero matrix can be used. If 0X  is not stabilizing, and finding 

SX  is not required, Algorithm N could converge to another ARE solution.  

Since the solution computed by a Newton algorithm generally depends on 
initialization, another option specifies if the stabilizing solution SX  is to be found. 

This is assumed to be the case in the sequel. The initial matrix 0X  must then be 
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stabilizing, and a warning is issued if this property does not hold; moreover, if the 
computed X is not stabilizing, an error is issued. 
An option specifies whether to use standard Newton's method, or one of the 
modified Newton's method variations, discussed in a paragraph below, which 
employ a line search procedure. 
Another option is to scale the matrices kA  and E (if  E is general) for solving 

Lyapunov equations, and suitably update their solutions. Note that the LAPACK 
(www.netlib.org/lapack/) subroutines DGEES and DGGES [52], which are called by 
the SLICOT standard and generalized Lyapunov solvers, respectively, to compute 
the real Schur(-triangular) form, do not scale the coefficient matrices. Just column 
and row permutations are performed, to separate isolated eigenvalues. For some 
examples from the DARE benchmark collection [54], and no scaling, this fact 
created troubles: the convergence was not achieved in a reasonable number of 
iterations. This difficulty was removed by the scaling included in the Newton 
solver. Moreover, scaling allows sometimes to compute more accurate solutions 
and/or use less iterations than in the case with no scaling. 
For CAREs, either the matrices B and R (or its Cholesky factor, cR ), or the matrix 

TGG   may be given. For DAREs, it is compulsory to provide B and R (not cR . 

A maximum allowed number of iteration steps, , is specified on input, and 
the number of iteration steps performed, S, is returned on exit. 
 
3.5. Computing the step size 
 
The optimal step size kt  is given by 

  (23) 
If certain standard conditions hold [29], an optimal kt  exists, and it is in the 

„canonical” interval [0,2]. Since solving (23) for a DARE is expensive, an 
approximate value kt  is found numerically as the argument of the minimal value in 

[0,2] of a polynomial of order 4. For a CARE, the residual in kk tNX   can be 

written as 

,  (24) 
where . Hence, the problem (23), which is equivalent 
to the minimization of , is replaced by the minimization of the 
quartic polynomial [29]  

,(25) 
where 

. 
For a DARE, the same polynomial (25) is used, but it can only approximate the 

value of , since the underlying function is rational, not 
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polynomial. The approximation is obtained by replacing the function denominator 
by the second order Taylor series approximant at 0t , therefore i can be useful 

when t is small enough. For instance, if 
kk NG

t
ˆ

1
 , where  is any 

submultiplicative norm, then  is nonsingular, if 

 is nonsingular. Since kt  is chosen from the interval [0,2], the condition 

above is satisfied if 
2

1ˆ kk NG . It can be shown [29] that if kX  is stabilizing, 

then either Nk is a descent direction for , or sk XX  . But the 

stabilizing property is not guaranteed, at least for . When  kk NĜ  is large 

(usually, at the beginning of the iterative Newton process), the acceptable step sizes 

kt  could be too small, and the progress of the iteration could be too slow. 

The coefficients of the polynomial  tfk  for DARE are computed using the same 

relations as above, but  is given by . Therefore, 
the computed kt  may only approximately solve (23). To find kt  for both CAREs 

or DAREs, a cubic polynomial (the derivative of  tfk  is set up, whose real roots 

in [0,2], if any, are candidates for the solution of the (approximate) minimum 
residual problem. The roots of this cubic polynomial are computed by solving an 
equivalent 4-by-4 standard or generalized eigenproblem, following [55]. Either the 
QR or the QZ algorithm [53] is chosen, depending on the magnitude of the 
polynomial coefficients. A candidate solution kt  should be real, placed in the 

interval [0,2], and satisfying , where  denotes the second derivative 
of kf . If no solution is found, then kt  is set equal to 1. If two solutions are found, 

then kt  is set to the value corresponding to the minimum residual.  

 
3.6. Iterative process 
 
If 0X  is given, the algorithm computes the initial residual and the matrix 

, using some of the formulas (8) – (10), (12), or (14) – (22), as needed, for 

. If no initial matrix 0X  is given, i.e., if 00 X , then  and 

. At the beginning of the iteration k, , the algorithm 
decides to terminate or continue the computations, based on the current normalized 
residual rk (and possible on relative residual ), defined below. (At 0k , 
the calculations continue, so that even a good initialization can be improved.)  
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The basic stopping criterion for the iterative process is defined in terms of a 
normalized residual, , and a tolerance τ. If 

, (26) 
the iterative process is successfully terminated at iteration k, and kX  is the 

computed approximate solution. If 0τ  , a default tolerance is used, computed by 
one of the formulas below for CARE and DARE, respectively, 

  

  

where M  is the relative machine precision. (The factor  is replaced by  

for CARE, when G is given, and  is replaced by  if   is 
indefinite, for DARE.) The second operand of min in the two formulas above was 
introduced to prevent deciding convergence too early for systems with very large 

norms for A, E, B
~

 (or G), or 0

~
B  (or 0

~
G ), and/or Q. 

The termination criterion involving (26) might not be satisfied in a reasonable 
number of iterations (or never, due to accumulated rounding errors), for systems 

with very large norms of the matrices A, E, B
~

or 0

~
B  (or G or 0

~
G ), and/or  Q , and 

a small norm of the solution X. However, an acceptable approximate solution might 
be much earlier available. Therefore, the MATLAB-style relative residual, , 
which includes the Frobenius norms of the matrix terms in (1) or (2) in the 

denominator of its formula, is also tested at iterations , , 
and it might produce the termination of the iterative process, instead of the criterion 
based on the normalized residual. This test is not performed at each iteration in 
order to reduce the additional computation costs, and to increase the chances of 

termination via the normalized residual test. If min( , , a 
standard (if nIE   or generalized Lyapunov equation (5) or (6) is solved in kN  

(the Newton direction), using SLICOT subroutines. 
Another test is to check out if updating kX  is meaningful. The updating is done if 

. If this is the case, then  is set, and the 
updated matrices  and  are computed. Otherwise, the 
iterative process is terminated and a warning value is set, since no further 
significant, but only marginal improvements can be expected, eventually after 
many additional iterations. Although the computation of the residual 

 can be efficiently performed by updating the residual , 
the original data is used, since the updating formula (24) could suffer from severe 
numerical cancellation, and hence its use could compromise the accuracy of the 
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intermediate results. Moreover, if the currently chosen step was not a Newton step, 
but the residual norm increased compared to the previous iteration, i.e., 

, but it is less than 1, and the normalized residual is 

less than 4

1

M , then the previous iterate is restored, the iterative process is 
terminated and a warning value is set. Otherwise, the iteration continues. 
Sometimes, mainly in the first iterations, the computed optimal steps kt  are too 

small, and the residual decreases too slowly. This is called stagnation, and 
remedies are used to escape stagnation, as described below. The chosen strategy 

was to set 1kt  when stagnation is detected, but also when 5.0kt , 14

1

 kM r , 

and , if this happens during the first 10 iterations. The 
motivation for this strategy is that if the residual is small enough after the first few 
iterations, the use of a standard Newton step could further reduce the residual faster 
than a Newton algorithm with small step sizes. 
In order to detect stagnation, the last computed kB residual Frobenius norms are 

stored in an array RES. If , then 
1kt  is used instead. The implementation uses 9.0τ s  and sets 2Bk , but 

values as large as 10 can be used by changing this parameter. The first kB  entries of 
array RES are reset to 0 whenever a standard Newton step is applied. 
 
3.7. Line search strategies 
 
Other line search stategies may be chosen besides the pure line search strategy, 
which uses a solution kt  of the (approximate) minimization of the quartic 

polynomial (25) at each iteration k. Specifically, in the combined strategy, line 
search is employed in the beginning of the iterative process, but the algorithm 
switches to the standard method when the normalized residual is smaller than a 
specified (or default) tolerance. This strategy is motivated by the remark that when 
the normalized residual is small enough, line search cannot offer sensible 
improvements, and standard algorithm converges with a fast rate. Moreover, kt  

will be close to 1 in such a case, and typically there will be no sensible difference 
between the values of  computed for kt  and for 1. Therefore, the 

calculations for finding kt  can be avoided. 

In the hybrid strategy, a standard Newton step is tried first and used if  

 
otherwise, the step corresponding to the (approximate) line search procedure is 
tried, and that step which gives the smallest residual is selected and used at that 
iteration. 
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Finally, the backtracking strategy, proposed in [29] for DAREs, is a special hybrid 
strategy in which the selected step is only taken provided there is a sufficient 
residual norm decrease. Otherwise, the step size is reduced until a sufficient 
decrease is eventually obtained. If this is not the case, or stagnation is detected, 
then a standard Newton step is used. This approach can increase the speed of the 
iterative process. 
 
3.8. Memory storage issues 
 
The arrays holding the data matrices A and E are unchanged on exit, except for A 
when 0S , but S should and could be removed from ARE using (8). In this 

special case, A
~

 is returned. Array Q stores matrix Q on entry and the computed 
solution SX  on exit. For CARE, array B stores either B or G. If cnm  , with c 

defined in Subsection 3.2, and the Cholesky factor Rc (for CARE) or  sc XR̂  (for 

DARE) can be computed, then the array B, storing  B  on input, returns the matrix 

B
~

 or SB
~

, respectively. Otherwise, array B is unchanged on exit. Similarly, the 

array R, storing R on input, may return either the Cholesky factor of R (for CARE) 

or of  sXR̂  (for DARE), if it can be computed, or the factors of the TUDU  or 
TLDL  factorization of that matrix, if it is found to be numerically indefinite. In the 

last case, the interchanges performed for the TUDU  or TLDL  factorization are 
stored in an auxiliary integer array. The finally computed normalized residual is 
also returned. Moreover, approximate closed-loop system poles, as well as 
min   150, s  values of the residual norms, normalized residuals, and Newton 
steps are returned in the working array. 
Either the upper, or lower triangles, not both, of the symmetric matrices Q, R, Xk, 

and G or kĜ  if used, need to be stored. (Note that if the lower triangle of R should 

be used, the Cholesky factorization is T
ccRRR : , with  Rc  lower triangular, but 

the computations are similar. The same is true for  kXR̂   

When possible, pairs of symmetric matrices are stored economically, to reduce the 
workspace requirements, but preserving the two-dimensional array indexing, for 
efficiency. Specifically, the upper (or lower) triangle of  Xk  and the lower (upper) 
triangle of  kXR  are concatenated along the main diagonals in a two-dimensional 

 1nn  array, and similarly for  G  (or kĜ ) and a copy of the matrix Q, if G (or 

kĜ ) is used. Array Q itself is also used for temporarily storing the residual  kXR , 

as well as the intermediate matrices  Xk  and the final solution. 
The optimal size of the needed real working array can be queried, by setting its 
length to -1 . Then, the solver returns immediately, with the first entry of that array 
set to the optimal size, which could be used in the next solver call. 



 
 
 
 
 
 

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018 
 

 
 
 
 
 
 

279 

4. Numerical results 
 

This section presents some results of an extensive performance investigation of the 
solvers based on Newton's method. The numerical results have been obtained on an 
Intel Core i7-3820QM portable computer at 2.7 GHz, with 16 GB RAM, with the 

relative machine precision 161022.2 M , using Windows 7 Professional 
(Service Pack 1) operating system (64 bit), Intel Visual Fortran Composer XE 2015 
and MATLAB 8.6.0.267246 (R2015b). The SLICOT-based MATLAB executable 
MEX-function has been built using MATLAB-provided optimized LAPACK and 
BLAS subroutines. 
Some results for randomly generated CAREs, from a uniform distribution in the 
(0,1) interval, are described in [46]. Stable standard and descriptor systems, with Q 
and R not identity matrices, and nonzero matrix S, have been tried. The initial 
matrix X0 has been zero, and the dimensions n and m have been set as 

1000:200:200n , nm :200:200  (in a MATLAB notation), but also as 
2000 mn . Both standard and modified Newton solvers have been 

significantly more accurate (with one exception for the standard solver, mentioned 
below), and almost always faster than care. The mean number of iterations has been 
5.33 and 5.66 for the two solvers, respectively. Details are given in [46]. Other 
results, not yet published, are summarized below. Figure 1 and Fig. 2 show the 
normalized residuals and the CPU times (obtained using the MATLAB functions 
tic and toc), respectively, when using standard Newton solver and care. The ordinate 
axes are scaled logarithmically, for better clarity, since the values vary 
significantly. The large error for an example with 600n , 200m , and 

 is not typical. The modified Newton solver performed better, see 
[46]. 

 
 

Fig. 1. Normalized residuals for random examples with general matrix  using MATLAB function 

care and standard Newton solver; , . 
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Fig. 2. CPU times for random examples with general matrix E using MATLAB function care and 
standard Newton solver; , . 

 
Other tests used the linear systems from the COMPleib collection [41], which 
contains 124 standard continuous-time examples, with several variations, giving a 

total of 168 problems. All but 16 problems (for systems with , with 
matrices in sparse format) have been tried. For testing purposes, these examples 
have also been considered as being of discrete-time type. The matrices Q, R, and S 

have been set to , , and .  
A set of tests used X0 for systems with A stable (in a continuous- or discrete-time 
sense); otherwise, the algorithm in [25], for CAREs, and in [56], for DAREs, has 
been tried, and when it failed to deliver a stabilizing initialization, the solution 
provided by the MATLAB function care or dare, respectively, has been used. The 
function care failed to solve the CARE for example REA4, which is not 
stabilizable. Also, dare could not solve 63 problems, which did not satisfy the 
needed conditions for the existence of a finite stabilizing solution. These examples 
have been removed from the tests. In addition, other five DARE examples, namely 
WEC1, WEC2, WEC3, HF2D_CD4, and HF2D_CD6 have been excluded. For 
these examples, the solution computed by dare had a very large Frobenius norm (of 
order  for WEC examples,  and  for the two HF2D examples), and 
relatively large normalized residuals (of order  or larger for WEC1 – WEC3, 

 and , for the other two examples). Such matrices proved to offer a poor 
initialization for Newton's method. A zero initialization was used for 44 CAREs 
and 7 DAREs with stable examples. Stabilization algorithm was tried on 107 
CAREs and 82 DAREs with unstable systems, and succeeded for 91 and 55 
examples, respectively. Failures occurred for 16 CARE and 27 DARE examples. 
With default tolerance, modified Newton solver improved the accuracy of the care 
solution for 15 out of these 16 examples.  
Other tests, with X0 computed by the stabilization algorithm also for stable systems, 
or with X0 returned by MATLAB functions for all examples, have also been 
performed. The last set of tests shows the performance of the Newton solver in 
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refining a solution computed by another solver. Most of the results shown in the 
figures below have been obtained without balancing the matrices of Lyapunov 
equations. 
For CAREs, and initialization by 0 or by the algorithm in [25], if possible, or by 
care, otherwise, the modified solver needed more iterations than the standard solver 
for 10 examples only. However, the mean number of iterations was about 11, for 
the modified solver, and 15.2, for the standard solver. Figure 3 shows the number 
of iterations of the Newton solver with line search. 
 

 
 

Fig. 3. Number of iterations performed by the Newton solver with line search for examples from the 
COMPleib collection; initialization by 0, algorithm in [25] or care. 

 
Figure 4 shows the normalized residuals for the COMPleib examples using care and 
standard Newton solver with default tolerance. For the TL example (numbered as 

61 in the figure), the normalized residual is  when using care. The 
matrices A and B of this example have norms of order  and are poorly scaled 
(the minimum magnitude in  A  is of order ). By the eigenvalue test,  A  was 
taken as stable, but standard Newton solver reported a singular Lyapunov equation. 
However, the modified Newton solver succeeded to solve the CARE in 12 

iterations, with a normalized residual of  (see [46]), and its results are 
used for the TL example in the next figures. 
 



 
 
 
 
 
 

     Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method 

 
 
 
 
 
 
282 

 
 

Fig. 4. Normalized residuals for examples from the COMPleib collection, using MATLAB function 
care and standard Newton solver, default tolerance, and initialization by 0, stabilization algorithm in 

[25] or care. 
 

 
 
Fig. 5. Relative residuals for examples from the COMPleib collection, using MATLAB function care 
and standard Newton solver, default tolerance, and initialization by 0, stabilization algorithm in [25] 

or care. 
 

 
Figure 5 shows the relative residuals, computed in a similar manner with that used 

in care. The maximum value is  for the modified Newton solver (for 

example ROC5),  for care (for TL), and 1 for the standard Newton 
solver (for TL). Omitting TL, the last two values changed to  and , 
respectively. Figure 6 shows the relative residuals for care and both Newton 
solvers. 
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Fig. 6. Relative residuals for examples from the COMPleib collection, using MATLAB function care 

and Newton solvers with or without line search, default tolerance, and initialization by 0, stabilization 
algorithm in [25] or care. 

 
Similarly, Fig. 7 shows the elapsed CPU times for care and standard Newton 
solver. This solver was globally over 25% slower than the solver with line search, 
and over 200% slower than care. The main reason is that, with the chosen 
initialization, some large examples (mainly, 15 examples in the HF2D class, with 
numbers between 80 and 103) required at least 27 iterations (and at least 19 
iterations, for the modified solver). With initialization provided by care, one 
iteration was needed for all examples, but TL. Clearly, a good initialization could 
significantly reduce the number of iterations. 
 

 
 
Fig. 7. Elapsed CPU time for examples from the COMPleib collection, using MATLAB function care 
and standard Newton solver, default tolerance, and initialization by 0, stabilization algorithm in [25] 

or care. 
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With the chosen initialization, standard Newton solver succeeded to obtain smaller 
relative residuals than care for 131 examples, out of 150.  

The bar graph from Fig. 8 shows the accuracy improvement. The height of the -th 
vertical bar indicates the number of examples for which the improvement was 

between  and  orders of magnitude. The number of examples in the six bins 
with nonzero values are 63, 44, 32, 8, 2, and 1, corresponding to improvements till 
one order of magnitude, between one and two orders of magnitude, and so on. Note 
that the first bin includes 19 examples for which care produced smaller relative 
residuals. With care initialization, both Newton solvers improved care relative 
residuals for all 150 examples, see [46]. 
 

 
 

Fig. 8. Bar graph showing the improvement of relative residuals for examples from the COMPleib 
collection, using standard Newton solver, default tolerance, and initialization by 0, stabilization 

algorithm in [25] or care. The height of the -th vertical bar indicates the number of examples for 
which the improvement was between  and  orders of magnitude. 

 
Similar results are obtained for DAREs. Figure 9 displays the normalized residuals 
for examples from the COMPleib collection, considered as discrete-time systems, 
using MATLAB function dare and both Newton solvers, with default tolerance and 
dare initialization. With few exceptions, Newton solver is either comparable with 
dare or it improved the normalized residuals, sometimes with several orders of 
magnitude. For three examples (TMD, ROC5, and ROC7, numbered as 71, 78, and 
80, respectively, in Fig. 9), Newton solver obtained normalized residuals of order 

. These values were truncated to , in order to improve the resolution. 
However, for four examples (HF2D_IS7, HF2D_CD5, HF2D17, and HF2D18, 
numbered as 59, 61, 69, and 70, respectively), standard Newton solver obtained 
clearly worse results than dare, but modified solver performed better than standard 
solver for these examples [48]. For other examples, the two Newton solvers got 
comparable residuals. 
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Fig. 9. Normalized residuals for examples from the COMPleib collection (taken as discrete-time 
systems), using MATLAB function dare and Newton solvers with and without line search, with 

default tolerance and dare initialization. 
 
Similarly, Fig. 10 plots the MATLAB-style relative residuals. The two Newton 
options are again comparable, except for five examples (HF2D_IS7, HF2D_CD5, 
HF2D15, HF2D17, and HF2D18, numbered as 59, 61, 67, 69, and 70, 
respectively). For the last two examples, standard method gave smaller residuals 
than line search method. 
 

 
 

Fig. 10. MATLAB-style residuals for examples from the COMPleib collection, using MATLAB 
function dare and Newton solver with and without line search, default tolerance and dare initialization. 
 
Figure 11 shows the corresponding elapsed CPU times for dare and Newton solver 
with or without line search, and with or without balancing of the Lyapunov 
equations matrices. Balancing may slightly increase the CPU time, but not always. 
For most examples, standard Newton solver is the fastest, and dare is slower by 
about one order of magnitude. The ratio between the sums of the elapsed CPU 
times for dare and for the modified Newton solver was about 3.3, while for the 
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other three variants (denoted LS BAL, STD, and STD BAL in Fig. 11) the ratios 
have values over 6. 
 

 
 

Fig. 11. Elapsed CPU time for examples from the COMPleib collection, using MATLAB function 
dare and Newton solver with options, default tolerance and dare initialization. 

 
Tests have also been performed with initialization , if A is stable, or 
computed by the algorithm in [56], if possible, when  A  is unstable, and by dare, 
otherwise. Most of the results are comparable with those presented above, except 
that the number of iterations were bigger for some examples. The DARE 
corresponding to example CSE1, for which matrix  A  is stable, could not be solved 
by the Newton solver with X0 set to zero, since a (numerically) singular Lyapunov 
equation was encountered during the iterative process. It is worth mentioning that  

A  is highly ill-conditioned, with condition number exceeding . But this 
DARE has been solved with initialization provided by the stabilization algorithm in 
[56]. The bar graph from Fig. 12 shows the improvement obtained, compared to 
dare, using Newton solver with line search, default tolerance and initialization 
chosen as mentioned above. The number of examples in the six bins are 50, 17, 6, 
3, 3, and 3, corresponding to improvements till one order of magnitude, between 
one and two orders of magnitude, and so on. 
 
5. Conclusions 

 
Basic theory and improved algorithms for solving continuous- or discrete-time 
algebraic Riccati equations using Newton's method with or without line search 
have been presented. Algorithmic details for the developed solvers, the main 
computational steps and convergence tests are described. The usefulness of such 
solvers is demonstrated by the results of an extensive performance investigation of 
their numerical behavior, in comparison with the results obtained calling the 
widely-used MATLAB functions care and dare. Randomly generated systems with 
orders till 1000 (and even 2000), as well as the systems from the large COMPleib 
collection, are considered. The numerical results most often show significantly 
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improved accuracy (measured in terms of normalized and relative residuals), and 
greater efficiency. The results strongly recommend the use of such algorithms, 
especially for improving, with little additional computing effort, the solutions 
computed by other solvers. 
 

 
 

Fig. 12. Bar graph showing the improvement of the MATLAB-style residuals for examples from the 
COMPleib collection, using Newton solver with line search, default tolerance and initialization by 

, or by the algorithm in [56], if possible, and by dare, otherwise. The height of the i-th 

vertical bar indicates the number of examples for which the improvement was between  and i 
orders of magnitude. 
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