
Journal of Engineering Sciences and Innovation
Volume 3, Issue 3 / 2018, pp. 265 - 290

 Technical Sciences
Academy of Romania E. Electrical and Electronics Engineering

 www.jesi.astr.ro
Received 10 July 2018 Accepted 14 September 2018
Received in revised from 3 August 2018

Numerical solution of algebraic Riccati equations by

Newton's method

VASILE SIMA*

National Institute for Research & Development in Informatics, 8–10 Bd. Mareşal Averescu,

Bucharest, Romania

Abstract. Improved Newton solvers, with or without line search, for both continuous- and
discrete-time algebraic Riccati equations (AREs) are discussed. The basic theory and
conceptual algorithm are briefly presented. Algorithmic details, computational steps, and
convergence tests are described. The main results of an extensive performance investigation
of the Newton solvers are summarized and compared with those obtained with the widely-
used MATLAB solvers, care and dare. Randomly generated systems with orders till 2000, as
well as the systems from the large COMPleib collection of examples, are considered.
Significantly improved accuracy, in terms of normalized and relative residuals, and
sometimes greater efficiency than for care/dare have been obtained. The results strongly
recommend the use of Newton solvers, especially for improving the solutions computed by
other solvers.

Keywords: Algebraic Riccati equation, numerical linear algebra, numerical methods,
optimal control, optimal estimation.

1. Introduction

The numerical solution of algebraic Riccati equations (AREs) is a basic
algorithmic step in many computational methods for model reduction, filtering,
spectral factorization, linear quadratic optimization, HH2 robust control, and

other domains. Let TQQ , A, nnRE , B, mnRS and mmT RRR , with
E nonsingular, and superscript T denoting the transpose. The generalized
continuous- and discrete-time AREs (CAREs and DAREs), can be defined by
 0XR , where

*Correspondence address: vsima@ici.ro

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

266

 , (1)

, (2)

respectively, where , the operator , borrowed from numerical

linear algebra, represents either M or MT, R or , respectively, are assumed
nonsingular,

,

and is unknown. The use of plus sign in front of the last term in
(1) and (2) allows to solve more general symmetric matrix equations. For an

optimal regulator problem, the operator is , while for an

optimal estimator problem , input matrix B is replaced (by duality)

by the transpose of the output matrix , and m is replaced by p. Often Q

and S are given as and , respectively.

The solutions of an ARE are the matrices X for which the residual is zero.
Often, a stabilizing solution, XS, is sought, so that the matrix pair

 is stable, where

, for CARE, , for DARE, (4)

and is the gain matrix of the optimal regulator or estimator.
There is an overwhelming literature concerning AREs and their use for solving
optimal control and estimation problems; see, e.g., the monographs [1] – [4] for
many theoretical results. An integral quadratic performance index in terms of the
system state and input of a linear system is used as an optimization criterion for a
control problem. The optimal solution, which minimizes this criterion, is expressed
as a state-feedback control law and it stabilizes the system. Briefly speaking, this
control law achieves a trade-off between the regulation error and the control effort.
The optimal estimation or filtering problem, for systems with Gaussian noise
disturbances, can be solved as a dual of an optimal control problem, and its
solution gives the minimum variance state estimate, based on the system output.
The results of an optimal design are often better suited in practice than those found
by other approaches. For instance, pole placement (or assignment) may produce
large gain matrices, hence high-magnitude control inputs, which might not be
acceptable in practice. Solving AREs is also a major computational step in H
robust control theory (e.g., [5]). A recent extended hystorical perspective of scalar
and matrix (differential) Riccati equations is given in [6], which also mentions
several domains of the control system theory where these equations appear, and
includes an extensive bibliography. As a proof of the ubiquity of AREs, it is worth
mentioning that in [7], an individualized model predictive control (MPC) for the

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

267

artificial pancreas has been investigated, where the moving horizon performance
index contains a „final” state term defined by the solution of a DARE. Therefore,
AREs are now appearing also in applications for the medical domain.
Due to their importance, numerous numerical methods have been proposed for
solving AREs; see, for instance, [4,8] and the references therein. There are also
several software implementation, e.g., in MATLAB [9], or in the SLICOT Library
[10] – [13]. There are both direct and iterative algorithms for solving AREs. The
first class includes the (generalized) Schur techniques, e.g., [14] – [17]. These
algorithms use a basis of the stable invariant or deflating subspace of a structured,
Hamiltonian (for CAREs) or symplectic (for DAREs) matrix (of size 2n) or matrix
pencil (of size 2n or 2n+m). The state-of-the-art MATLAB functions care and dare,
and several SLICOT routines implement such algorithms. Relatively recent
research, including both theoretical and numerical investigation, has been directed
to exploit the Hamiltonian or symplectic structure of the eigenproblem associated
to the ARE [18] – [22]. The second class of algorithms has several categories,
including matrix sign function techniques, e.g., [23, 24], Newton techniques, e.g.,
[14, 25], doubling algorithms, e.g., [26,27], or recursive algorithms, e.g., [28]. In
particular, [28] addresses CAREs with indefinite quadratic term; the stabilizing
solution is found as the limit of solutions of a sequence of CAREs with definite
quadratic term.
Newton's method for solving AREs has been investigated by many authors, for
instance, [3, 4, 8], [29] – [31]. Moreover, the matrix sign function method, [23, 24,
32, 33], uses a specialized Newton's method to compute the square root of the
identity matrix of order 2n. Newton's method has also been applied in [34] for
solving special classes of large-order CAREs, using low rank Cholesky factors of
the solutions of the Lyapunov equations built during the iterative rocess [35].
Additional numerical results, for randomly generated systems with 600n , and
comparison with MATLAB and SLICOT solvers are presented in [36]. However,
these specialized solvers require the assumptions that matrix A is structured or
sparse and the CARE solution has rank much smaller than n. (The possibly sparse

structure of A, and operations of the form Ab or bA 1 , with nRb , are used.)
Newton's method is attractive as an ARE solver due to several reasons. A main
reason is its quadratic convergence in the neighbourhood of an ARE solution.
Moreover, with a stabilizing matrix 0X , all Newton iterates and their limit are

stabilizing. In addition, the computational effort per Newton iteration (for dense
matrices) is expressed as a cubic polynomial in n and m, while for the best
direct algorithms the effort is defined by a cubic polynomial in 2n (or

mn 2) with significantly larger coefficients. Therefore, if convergence is
obtained, say, in less than 10 iterations, Newton algorithms are competitive with
the direct ones. Another main reason is the improved accuracy which can be
obtained.

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

268

One drawback of the Newton's method is its dependence on the initial matrix used,

0X . This matrix should be stabilizing, i.e., should be

stable, in order to compute the stabilizing solution SX . Finding a suitable 0X can

be a difficult task. Stabilizing algorithms have been proposed, mainly for standard
systems (with nIE , where nI is the identity matrix of order n), e.g., in [25, 31,

37, 38]. However, often these algorithms produce a matrix 0X with a very large

norm. Consequently, the following iterates, kX , ,2 ,1k , computed by the

Newton's method, could also be large, and the iterative process might need many
iterations before convergence, or encounter numerical difficulties. For this reason,
Newton's method is best used for iterative improvement of a solution returned by
other solver, or as defect correction method [39], delivering the maximal possible
accuracy when starting from a good approximate solution. Moreover, it is preferred
in implementing certain fault-tolerant systems, which require controller updating,
see, e.g., [40] and the references therein.
This paper describes a general solver for CAREs and DAREs, developed by the
author (based on [29, 30]), which can solve moderately large dense problems (e.g.,

1000n). The basic theory, conceptual algorithm, and the main implementation
details are summarized. The solver has extended functionality and good flexibility,
reliability, and efficiency. Its performance has been proven by the numerical results
obtained on randomly generated systems and on systems from the COMPleib
collection [41]. Preliminary results have been reported in [42]. Some results for
CAREs are included in [43] – [46] and for DAREs in [44, 47, 48]. How
computations can be organized in an iteration for improving efficiency was
investigated in [49].
The paper compares the performance of the Newton solvers with or without line
search (briefly called as modified and standard Newton solvers, respectively) with
the performance of the state-of-the-art commercial solvers care and dare from
MATLAB Control System Toolbox. The MATLAB solvers use a (generalized)
eigenvalue approach, based on the results in, e.g., [14, 15, 17].
The organization of the paper is as follows. Section 2 starts by summarizing the
basic theory and Newton algorithm for CAREs and DAREs. Section 3 discusses, in
separate subsections, some algorithmic and implementation details: computation of
the Newton step size, convergence tests, iterative process, etc. Section 4 presents
the main results of an extensive performance investigation of the solvers based on
Newton's method, in comparison with the MATLAB solvers care and dare.
Randomly generated systems with order till 2000, as well as systems from the
COMPleib collection [41], are considered. Section 5 summarizes the conclusions.

2. Basic theory for Newton-based ARE solvers

The algorithm discussed in the sequel is a modification of Newton's method,
employing a line search procedure to minimize, for CAREs, and reduce, for

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

269

DAREs, the residual along the Newton direction. The conceptual algorithm is
stated as follows:
Algorithm N: Newton's method with line search for an ARE

Input: The matrices E, A, B, Q, R, and S, and an initial matrix TXX 00 .

Output: The approximate solution Xk of CARE for (1) or DARE for (2).

FOR , DO
1. Compute kXR . If convergence or non-convergence is detected, return Xk

and/or a warning or error indicator value.
2. Compute with (4), and , where

.
3. Solve in kN the continuous- or discrete-time generalized Lyapunov

equation, (5) or (6), for CARE or DARE, respectively,

 , (5)

 . (6)
4. Find a step size tk which minimizes (with respect to t), for CARE, or

reduces, for DARE, the squared Frobenius norm of the next residual,

5. Update .

END

The usual, „standard” Lyapunov equations have nIE . Equation (6) is also called

generalized Stein equation. Note that the SLICOT Lyapunov solvers used can
directly work with . Since , matrix A is not

actually transposed even if , while is similarly obtained
with no transposition by using a suitable call to the matrix multiplication
subroutine DGEMM from Basic Linear Algebra Subprograms (BLAS) [50].
(Explicit matrix transpositions should be avoided in computations.)
Standard Newton algorithm is obtained by taking 1kt in Step 4 at each iteration.

When the initial matrix 0X is far from a Riccati equation solution, the modified

Newton's method, with line search, often outperforms the standard Newton's
method.
In theory, the following assumptions are needed.
Assumptions A:

1. Matrix E is nonsingular.

2. Matrix pair is stabilizable.
3. Matrix R is positive definite 0R for CAREs and nonnegative definite

 0R for DAREs.

4. A stabilizing solution SX exists and it is unique.

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

270

Note that Assumption 1 is not actually used by the developed solver, contrary to
some other solvers (including MATLAB functions care and dare).
The basic properties for the standard and modified Newton algorithms for AREs
can then be stated as follows [29]:
Theorem 1 (Convergence of Algorithm N, standard case) If the Assumptions A

hold, and 0X is stabilizing, then the iterates of the Algorithm N with 1kt satisfy

(a) All matrices kX are stabilizing.

(b) .
(c) .
(d) Global quadratic convergence: There is a constant 0 such that

 , (7)
Note that (7) does not hold for 0k , involving the iterates 0X and 1X .

Theorem 2 (Convergence of Algorithm N for CAREs) If the Assumptions A
hold, 0X is stabilizing, is controllable and

, for all 0k , then the iterates of the Algorithm N for CARE satisfy
(a) All iterates kX are stabilizing.

(b) and equality holds if and only if
.

(c) .
(d) .
(e) In a neighbourhood of SX , the convergence is quadratic.

(f) .

Theorem 2 does not ensure monotonic convergence of the iterates kX in terms of

definiteness, contrary to the standard case (Theorem 1, item (b)). On the other
hand, under the specified conditions, Theorem 2 states the monotonic convergence
of the residuals to zero, which is not true for the standard algorithm. Numerical
experiments support the conjecture that Theorem 2 also holds under the weaker
assumption of stabilizability instead of controllability.
Weaker results are available for the modified Newton algorithm for DAREs. One
such result [29] states that if kX is stabilizing, then kN computed by Algorithm N

is a descent direction for from kX , unless Sk XX .

3. Algorithmic and implementation issues

Algorithm N and the implemented solver deals with generalized AREs without
inverting the matrix E. This is very important for numerical reasons, since E might
be ill-conditioned with respect to inversion, so that large perturbations in the
data used might be introduced from the beginning of the calculations. The

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

271

implementation calls routines from SLICOT Library [11, 13, 51] (www.slicot.org),
as well as from LAPACK [52] (www.netlib.org/lapack/) and BLAS, see [50] and the
references therein (www.netlib.org/blas/). Standard AREs are solved with the
maximal possible efficiency, using suitable customization in the called routines.
(Even if a request to solve a generalized ARE is made, the solver checks out if E
happens to be identity and a standard ARE is efficiently solved if nIE).

Moreover, both control and filter AREs can be solved by the same solver, using an
option („mode”) parameter, which specifies the op operator. The matrices A and E
are not transposed. It possible to also avoid transposing C, for the filter equation,
but this is less important and more difficult to implement at the SLICOT Library
level, since some existing lower-level routines do not directly cover the transposed
case. But this issue was solved at the upper level, in the executable function.
Symmetry is used whenever possible. Common subexpressions of matrix products
are evaluated only once, and the sequence of multiplications is optimized,
depending on the n and m values. A new block algorithm is used for computing the

matrix product MN, when the result is symmetric (e.g., when , and

).
The essential computational procedures involved in Algorithm N will be detailed
below.

3.1. Removing S matrix

Any CARE (1), but also any DARE (2) with nonsingular R, can be rewritten in a
simpler form, which is more convenient for Algorithm N. Specifically, setting

 , (8)

after redefining A and Q as A
~

 and Q
~

, respectively, then (1) and (2) reduce to

 , (9)

 ,(10)
respectively, where

 , . (11)
Simpler forms are obtained in the standard case nIE . The tilde

transformations in (8) eliminate the matrix S from the formulas to be used by
Newton's algorithms. It is more economical to solve AREs for (9) or (10) than for
(1) or (2), respectively, since otherwise the calculations involving S must be
performed at each iteration. In this case, the matrix kK is no longer computed in

Step 2, and kA is given by

, for CARE,

 , , for DARE. (12)

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

272

Since R was assumed positive definite, the Cholesky factor cR of R (i.e.,

, with cR upper triangular), can be used to obtain A
~

 and Q
~

 in (8).

Defining and , the relations (8) are equivalent to

 , (13)
so just two triangular sets of systems with the same coefficient matrix, cR , should

be solved, and two matrix products should be computed for obtaining A
~

 and Q
~

,
after factoring R. This is done before starting the iteration loop in Algorithm N.

Symmetry is exploited for getting Q
~

 via a BLAS [50] symm operation.

When R is not positive definite, then either or factorization [53] of

R can be employed for computing A
~

 and Q
~

. Similarly, /

factorization of can be used for obtaining kĜ , when is indefinite.

This may happen for DAREs during the iterations of Algorithm N, even if 0R .

3.2. Using factored G or kĜ matrices

When m is smaller enough than n (cnm , where
4

3
c , for a CARE, or

5

3
c ,

for a standard CARE), a factorization of G can be used instead of G during the

iterative process. Specifically, with the notation above, , and so,

.

Similarly, if , then the Cholesky factor of , , and a

factorization of kĜ can be used for DARE, if cnm , with
4

1
c . Defining

, then , .

If kĜ is to be preferred (since cnm), but the norm of 0Ĝ is too large, then, if

possible, the factor kB
~

 is used in the iterative process instead of kĜ , in order to

potentially improve the numerical behavior, even if the efficiency somewhat
diminishes.

3.3. Using S matrix

When 0S , but R is ill-conditioned with respect to inversion, the use of formulas
(8) will potentially introduce large errors from the beginning of Algorithm N,
which will be propagated over the entire iterative process, possibly resulting in
slower convergence, and/or an inaccurate computed solution. Using S during the
iterations could avoid such degradation. Therefore, an option of the solver allows

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

273

to avoid the transformations (8), and involve S in all subsequent calculations. In

this case, other formulas are needed, since G or kĜ cannot be used. Specifically,

define

 for CARE, (14)

 for DARE,(15)

with cR and kc XR̂ introduced above; it is assumed here that 0ˆ kc XR for

computing kF in (15). (kH is a convenient notation for kXL Then, the residual

 kXR and the matrix kAop can be computed using

, (16)

 , for CARE, (17)

, (18)

 , for DARE, (19)

where B
~

 and kB
~

 have been defined above.

If, however, R or kXR̂ is (numerically) indefinite, then the needed formulas

follow directly from (2) – (4), namely,

, (20)

, (21)

 , (22)

involving TUDU or TLDL factorization of R or kXR̂ . Moreover, symmetry of

the matrix product kk KH is taken into account, since the solver computes either

the upper or lower triangle of kXR .

The implementation is optimized by using common subexpressions when
computing kXR and kAop , taking also into account the ratio between n and

m. The formulas used and their proofs are given in [49].

3.4. Initialization and main options

The iteration is started by an initial (stabilizing) matrix 0X , which may not be

given on input, if the zero matrix can be used. If 0X is not stabilizing, and finding

SX is not required, Algorithm N could converge to another ARE solution.

Since the solution computed by a Newton algorithm generally depends on
initialization, another option specifies if the stabilizing solution SX is to be found.

This is assumed to be the case in the sequel. The initial matrix 0X must then be

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

274

stabilizing, and a warning is issued if this property does not hold; moreover, if the
computed X is not stabilizing, an error is issued.
An option specifies whether to use standard Newton's method, or one of the
modified Newton's method variations, discussed in a paragraph below, which
employ a line search procedure.
Another option is to scale the matrices kA and E (if E is general) for solving

Lyapunov equations, and suitably update their solutions. Note that the LAPACK
(www.netlib.org/lapack/) subroutines DGEES and DGGES [52], which are called by
the SLICOT standard and generalized Lyapunov solvers, respectively, to compute
the real Schur(-triangular) form, do not scale the coefficient matrices. Just column
and row permutations are performed, to separate isolated eigenvalues. For some
examples from the DARE benchmark collection [54], and no scaling, this fact
created troubles: the convergence was not achieved in a reasonable number of
iterations. This difficulty was removed by the scaling included in the Newton
solver. Moreover, scaling allows sometimes to compute more accurate solutions
and/or use less iterations than in the case with no scaling.
For CAREs, either the matrices B and R (or its Cholesky factor, cR), or the matrix

TGG may be given. For DAREs, it is compulsory to provide B and R (not cR .

A maximum allowed number of iteration steps, , is specified on input, and
the number of iteration steps performed, S, is returned on exit.

3.5. Computing the step size

The optimal step size kt is given by

 (23)
If certain standard conditions hold [29], an optimal kt exists, and it is in the

„canonical” interval [0,2]. Since solving (23) for a DARE is expensive, an
approximate value kt is found numerically as the argument of the minimal value in

[0,2] of a polynomial of order 4. For a CARE, the residual in kk tNX can be

written as

, (24)
where . Hence, the problem (23), which is equivalent
to the minimization of , is replaced by the minimization of the
quartic polynomial [29]

,(25)
where

.
For a DARE, the same polynomial (25) is used, but it can only approximate the

value of , since the underlying function is rational, not

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

275

polynomial. The approximation is obtained by replacing the function denominator
by the second order Taylor series approximant at 0t , therefore i can be useful

when t is small enough. For instance, if
kk NG

t
ˆ

1
 , where is any

submultiplicative norm, then is nonsingular, if

 is nonsingular. Since kt is chosen from the interval [0,2], the condition

above is satisfied if
2

1ˆ kk NG . It can be shown [29] that if kX is stabilizing,

then either Nk is a descent direction for , or sk XX . But the

stabilizing property is not guaranteed, at least for . When kk NĜ is large

(usually, at the beginning of the iterative Newton process), the acceptable step sizes

kt could be too small, and the progress of the iteration could be too slow.

The coefficients of the polynomial tfk for DARE are computed using the same

relations as above, but is given by . Therefore,
the computed kt may only approximately solve (23). To find kt for both CAREs

or DAREs, a cubic polynomial (the derivative of tfk is set up, whose real roots

in [0,2], if any, are candidates for the solution of the (approximate) minimum
residual problem. The roots of this cubic polynomial are computed by solving an
equivalent 4-by-4 standard or generalized eigenproblem, following [55]. Either the
QR or the QZ algorithm [53] is chosen, depending on the magnitude of the
polynomial coefficients. A candidate solution kt should be real, placed in the

interval [0,2], and satisfying , where denotes the second derivative
of kf . If no solution is found, then kt is set equal to 1. If two solutions are found,

then kt is set to the value corresponding to the minimum residual.

3.6. Iterative process

If 0X is given, the algorithm computes the initial residual and the matrix

, using some of the formulas (8) – (10), (12), or (14) – (22), as needed, for

. If no initial matrix 0X is given, i.e., if 00 X , then and

. At the beginning of the iteration k, , the algorithm
decides to terminate or continue the computations, based on the current normalized
residual rk (and possible on relative residual), defined below. (At 0k ,
the calculations continue, so that even a good initialization can be improved.)

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

276

The basic stopping criterion for the iterative process is defined in terms of a
normalized residual, , and a tolerance τ. If

, (26)
the iterative process is successfully terminated at iteration k, and kX is the

computed approximate solution. If 0τ , a default tolerance is used, computed by
one of the formulas below for CARE and DARE, respectively,

where M is the relative machine precision. (The factor is replaced by

for CARE, when G is given, and is replaced by if is
indefinite, for DARE.) The second operand of min in the two formulas above was
introduced to prevent deciding convergence too early for systems with very large

norms for A, E, B
~

 (or G), or 0

~
B (or 0

~
G), and/or Q.

The termination criterion involving (26) might not be satisfied in a reasonable
number of iterations (or never, due to accumulated rounding errors), for systems

with very large norms of the matrices A, E, B
~

or 0

~
B (or G or 0

~
G), and/or Q , and

a small norm of the solution X. However, an acceptable approximate solution might
be much earlier available. Therefore, the MATLAB-style relative residual, ,
which includes the Frobenius norms of the matrix terms in (1) or (2) in the

denominator of its formula, is also tested at iterations , ,
and it might produce the termination of the iterative process, instead of the criterion
based on the normalized residual. This test is not performed at each iteration in
order to reduce the additional computation costs, and to increase the chances of

termination via the normalized residual test. If min(, , a
standard (if nIE or generalized Lyapunov equation (5) or (6) is solved in kN

(the Newton direction), using SLICOT subroutines.
Another test is to check out if updating kX is meaningful. The updating is done if

. If this is the case, then is set, and the
updated matrices and are computed. Otherwise, the
iterative process is terminated and a warning value is set, since no further
significant, but only marginal improvements can be expected, eventually after
many additional iterations. Although the computation of the residual

 can be efficiently performed by updating the residual ,
the original data is used, since the updating formula (24) could suffer from severe
numerical cancellation, and hence its use could compromise the accuracy of the

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

277

intermediate results. Moreover, if the currently chosen step was not a Newton step,
but the residual norm increased compared to the previous iteration, i.e.,

, but it is less than 1, and the normalized residual is

less than 4

1

M , then the previous iterate is restored, the iterative process is
terminated and a warning value is set. Otherwise, the iteration continues.
Sometimes, mainly in the first iterations, the computed optimal steps kt are too

small, and the residual decreases too slowly. This is called stagnation, and
remedies are used to escape stagnation, as described below. The chosen strategy

was to set 1kt when stagnation is detected, but also when 5.0kt , 14

1

 kM r ,

and , if this happens during the first 10 iterations. The
motivation for this strategy is that if the residual is small enough after the first few
iterations, the use of a standard Newton step could further reduce the residual faster
than a Newton algorithm with small step sizes.
In order to detect stagnation, the last computed kB residual Frobenius norms are

stored in an array RES. If , then
1kt is used instead. The implementation uses 9.0τ s and sets 2Bk , but

values as large as 10 can be used by changing this parameter. The first kB entries of
array RES are reset to 0 whenever a standard Newton step is applied.

3.7. Line search strategies

Other line search stategies may be chosen besides the pure line search strategy,
which uses a solution kt of the (approximate) minimization of the quartic

polynomial (25) at each iteration k. Specifically, in the combined strategy, line
search is employed in the beginning of the iterative process, but the algorithm
switches to the standard method when the normalized residual is smaller than a
specified (or default) tolerance. This strategy is motivated by the remark that when
the normalized residual is small enough, line search cannot offer sensible
improvements, and standard algorithm converges with a fast rate. Moreover, kt

will be close to 1 in such a case, and typically there will be no sensible difference
between the values of computed for kt and for 1. Therefore, the

calculations for finding kt can be avoided.

In the hybrid strategy, a standard Newton step is tried first and used if

otherwise, the step corresponding to the (approximate) line search procedure is
tried, and that step which gives the smallest residual is selected and used at that
iteration.

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

278

Finally, the backtracking strategy, proposed in [29] for DAREs, is a special hybrid
strategy in which the selected step is only taken provided there is a sufficient
residual norm decrease. Otherwise, the step size is reduced until a sufficient
decrease is eventually obtained. If this is not the case, or stagnation is detected,
then a standard Newton step is used. This approach can increase the speed of the
iterative process.

3.8. Memory storage issues

The arrays holding the data matrices A and E are unchanged on exit, except for A
when 0S , but S should and could be removed from ARE using (8). In this

special case, A
~

 is returned. Array Q stores matrix Q on entry and the computed
solution SX on exit. For CARE, array B stores either B or G. If cnm , with c

defined in Subsection 3.2, and the Cholesky factor Rc (for CARE) or sc XR̂ (for

DARE) can be computed, then the array B, storing B on input, returns the matrix

B
~

 or SB
~

, respectively. Otherwise, array B is unchanged on exit. Similarly, the

array R, storing R on input, may return either the Cholesky factor of R (for CARE)

or of sXR̂ (for DARE), if it can be computed, or the factors of the TUDU or
TLDL factorization of that matrix, if it is found to be numerically indefinite. In the

last case, the interchanges performed for the TUDU or TLDL factorization are
stored in an auxiliary integer array. The finally computed normalized residual is
also returned. Moreover, approximate closed-loop system poles, as well as
min 150, s values of the residual norms, normalized residuals, and Newton
steps are returned in the working array.
Either the upper, or lower triangles, not both, of the symmetric matrices Q, R, Xk,

and G or kĜ if used, need to be stored. (Note that if the lower triangle of R should

be used, the Cholesky factorization is T
ccRRR : , with Rc lower triangular, but

the computations are similar. The same is true for kXR̂

When possible, pairs of symmetric matrices are stored economically, to reduce the
workspace requirements, but preserving the two-dimensional array indexing, for
efficiency. Specifically, the upper (or lower) triangle of Xk and the lower (upper)
triangle of kXR are concatenated along the main diagonals in a two-dimensional

 1nn array, and similarly for G (or kĜ) and a copy of the matrix Q, if G (or

kĜ) is used. Array Q itself is also used for temporarily storing the residual kXR ,

as well as the intermediate matrices Xk and the final solution.
The optimal size of the needed real working array can be queried, by setting its
length to -1 . Then, the solver returns immediately, with the first entry of that array
set to the optimal size, which could be used in the next solver call.

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

279

4. Numerical results

This section presents some results of an extensive performance investigation of the
solvers based on Newton's method. The numerical results have been obtained on an
Intel Core i7-3820QM portable computer at 2.7 GHz, with 16 GB RAM, with the

relative machine precision 161022.2 M , using Windows 7 Professional
(Service Pack 1) operating system (64 bit), Intel Visual Fortran Composer XE 2015
and MATLAB 8.6.0.267246 (R2015b). The SLICOT-based MATLAB executable
MEX-function has been built using MATLAB-provided optimized LAPACK and
BLAS subroutines.
Some results for randomly generated CAREs, from a uniform distribution in the
(0,1) interval, are described in [46]. Stable standard and descriptor systems, with Q
and R not identity matrices, and nonzero matrix S, have been tried. The initial
matrix X0 has been zero, and the dimensions n and m have been set as

1000:200:200n , nm :200:200 (in a MATLAB notation), but also as
2000 mn . Both standard and modified Newton solvers have been

significantly more accurate (with one exception for the standard solver, mentioned
below), and almost always faster than care. The mean number of iterations has been
5.33 and 5.66 for the two solvers, respectively. Details are given in [46]. Other
results, not yet published, are summarized below. Figure 1 and Fig. 2 show the
normalized residuals and the CPU times (obtained using the MATLAB functions
tic and toc), respectively, when using standard Newton solver and care. The ordinate
axes are scaled logarithmically, for better clarity, since the values vary
significantly. The large error for an example with 600n , 200m , and

 is not typical. The modified Newton solver performed better, see
[46].

Fig. 1. Normalized residuals for random examples with general matrix using MATLAB function

care and standard Newton solver; , .

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

280

Fig. 2. CPU times for random examples with general matrix E using MATLAB function care and
standard Newton solver; , .

Other tests used the linear systems from the COMPleib collection [41], which
contains 124 standard continuous-time examples, with several variations, giving a

total of 168 problems. All but 16 problems (for systems with , with
matrices in sparse format) have been tried. For testing purposes, these examples
have also been considered as being of discrete-time type. The matrices Q, R, and S

have been set to , , and .
A set of tests used X0 for systems with A stable (in a continuous- or discrete-time
sense); otherwise, the algorithm in [25], for CAREs, and in [56], for DAREs, has
been tried, and when it failed to deliver a stabilizing initialization, the solution
provided by the MATLAB function care or dare, respectively, has been used. The
function care failed to solve the CARE for example REA4, which is not
stabilizable. Also, dare could not solve 63 problems, which did not satisfy the
needed conditions for the existence of a finite stabilizing solution. These examples
have been removed from the tests. In addition, other five DARE examples, namely
WEC1, WEC2, WEC3, HF2D_CD4, and HF2D_CD6 have been excluded. For
these examples, the solution computed by dare had a very large Frobenius norm (of
order for WEC examples, and for the two HF2D examples), and
relatively large normalized residuals (of order or larger for WEC1 – WEC3,

 and , for the other two examples). Such matrices proved to offer a poor
initialization for Newton's method. A zero initialization was used for 44 CAREs
and 7 DAREs with stable examples. Stabilization algorithm was tried on 107
CAREs and 82 DAREs with unstable systems, and succeeded for 91 and 55
examples, respectively. Failures occurred for 16 CARE and 27 DARE examples.
With default tolerance, modified Newton solver improved the accuracy of the care
solution for 15 out of these 16 examples.
Other tests, with X0 computed by the stabilization algorithm also for stable systems,
or with X0 returned by MATLAB functions for all examples, have also been
performed. The last set of tests shows the performance of the Newton solver in

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

281

refining a solution computed by another solver. Most of the results shown in the
figures below have been obtained without balancing the matrices of Lyapunov
equations.
For CAREs, and initialization by 0 or by the algorithm in [25], if possible, or by
care, otherwise, the modified solver needed more iterations than the standard solver
for 10 examples only. However, the mean number of iterations was about 11, for
the modified solver, and 15.2, for the standard solver. Figure 3 shows the number
of iterations of the Newton solver with line search.

Fig. 3. Number of iterations performed by the Newton solver with line search for examples from the
COMPleib collection; initialization by 0, algorithm in [25] or care.

Figure 4 shows the normalized residuals for the COMPleib examples using care and
standard Newton solver with default tolerance. For the TL example (numbered as

61 in the figure), the normalized residual is when using care. The
matrices A and B of this example have norms of order and are poorly scaled
(the minimum magnitude in A is of order). By the eigenvalue test, A was
taken as stable, but standard Newton solver reported a singular Lyapunov equation.
However, the modified Newton solver succeeded to solve the CARE in 12

iterations, with a normalized residual of (see [46]), and its results are
used for the TL example in the next figures.

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

282

Fig. 4. Normalized residuals for examples from the COMPleib collection, using MATLAB function
care and standard Newton solver, default tolerance, and initialization by 0, stabilization algorithm in

[25] or care.

Fig. 5. Relative residuals for examples from the COMPleib collection, using MATLAB function care
and standard Newton solver, default tolerance, and initialization by 0, stabilization algorithm in [25]

or care.

Figure 5 shows the relative residuals, computed in a similar manner with that used

in care. The maximum value is for the modified Newton solver (for

example ROC5), for care (for TL), and 1 for the standard Newton
solver (for TL). Omitting TL, the last two values changed to and ,
respectively. Figure 6 shows the relative residuals for care and both Newton
solvers.

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

283

Fig. 6. Relative residuals for examples from the COMPleib collection, using MATLAB function care

and Newton solvers with or without line search, default tolerance, and initialization by 0, stabilization
algorithm in [25] or care.

Similarly, Fig. 7 shows the elapsed CPU times for care and standard Newton
solver. This solver was globally over 25% slower than the solver with line search,
and over 200% slower than care. The main reason is that, with the chosen
initialization, some large examples (mainly, 15 examples in the HF2D class, with
numbers between 80 and 103) required at least 27 iterations (and at least 19
iterations, for the modified solver). With initialization provided by care, one
iteration was needed for all examples, but TL. Clearly, a good initialization could
significantly reduce the number of iterations.

Fig. 7. Elapsed CPU time for examples from the COMPleib collection, using MATLAB function care
and standard Newton solver, default tolerance, and initialization by 0, stabilization algorithm in [25]

or care.

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

284

With the chosen initialization, standard Newton solver succeeded to obtain smaller
relative residuals than care for 131 examples, out of 150.

The bar graph from Fig. 8 shows the accuracy improvement. The height of the -th
vertical bar indicates the number of examples for which the improvement was

between and orders of magnitude. The number of examples in the six bins
with nonzero values are 63, 44, 32, 8, 2, and 1, corresponding to improvements till
one order of magnitude, between one and two orders of magnitude, and so on. Note
that the first bin includes 19 examples for which care produced smaller relative
residuals. With care initialization, both Newton solvers improved care relative
residuals for all 150 examples, see [46].

Fig. 8. Bar graph showing the improvement of relative residuals for examples from the COMPleib
collection, using standard Newton solver, default tolerance, and initialization by 0, stabilization

algorithm in [25] or care. The height of the -th vertical bar indicates the number of examples for
which the improvement was between and orders of magnitude.

Similar results are obtained for DAREs. Figure 9 displays the normalized residuals
for examples from the COMPleib collection, considered as discrete-time systems,
using MATLAB function dare and both Newton solvers, with default tolerance and
dare initialization. With few exceptions, Newton solver is either comparable with
dare or it improved the normalized residuals, sometimes with several orders of
magnitude. For three examples (TMD, ROC5, and ROC7, numbered as 71, 78, and
80, respectively, in Fig. 9), Newton solver obtained normalized residuals of order

. These values were truncated to , in order to improve the resolution.
However, for four examples (HF2D_IS7, HF2D_CD5, HF2D17, and HF2D18,
numbered as 59, 61, 69, and 70, respectively), standard Newton solver obtained
clearly worse results than dare, but modified solver performed better than standard
solver for these examples [48]. For other examples, the two Newton solvers got
comparable residuals.

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

285

Fig. 9. Normalized residuals for examples from the COMPleib collection (taken as discrete-time
systems), using MATLAB function dare and Newton solvers with and without line search, with

default tolerance and dare initialization.

Similarly, Fig. 10 plots the MATLAB-style relative residuals. The two Newton
options are again comparable, except for five examples (HF2D_IS7, HF2D_CD5,
HF2D15, HF2D17, and HF2D18, numbered as 59, 61, 67, 69, and 70,
respectively). For the last two examples, standard method gave smaller residuals
than line search method.

Fig. 10. MATLAB-style residuals for examples from the COMPleib collection, using MATLAB
function dare and Newton solver with and without line search, default tolerance and dare initialization.

Figure 11 shows the corresponding elapsed CPU times for dare and Newton solver
with or without line search, and with or without balancing of the Lyapunov
equations matrices. Balancing may slightly increase the CPU time, but not always.
For most examples, standard Newton solver is the fastest, and dare is slower by
about one order of magnitude. The ratio between the sums of the elapsed CPU
times for dare and for the modified Newton solver was about 3.3, while for the

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

286

other three variants (denoted LS BAL, STD, and STD BAL in Fig. 11) the ratios
have values over 6.

Fig. 11. Elapsed CPU time for examples from the COMPleib collection, using MATLAB function
dare and Newton solver with options, default tolerance and dare initialization.

Tests have also been performed with initialization , if A is stable, or
computed by the algorithm in [56], if possible, when A is unstable, and by dare,
otherwise. Most of the results are comparable with those presented above, except
that the number of iterations were bigger for some examples. The DARE
corresponding to example CSE1, for which matrix A is stable, could not be solved
by the Newton solver with X0 set to zero, since a (numerically) singular Lyapunov
equation was encountered during the iterative process. It is worth mentioning that

A is highly ill-conditioned, with condition number exceeding . But this
DARE has been solved with initialization provided by the stabilization algorithm in
[56]. The bar graph from Fig. 12 shows the improvement obtained, compared to
dare, using Newton solver with line search, default tolerance and initialization
chosen as mentioned above. The number of examples in the six bins are 50, 17, 6,
3, 3, and 3, corresponding to improvements till one order of magnitude, between
one and two orders of magnitude, and so on.

5. Conclusions

Basic theory and improved algorithms for solving continuous- or discrete-time
algebraic Riccati equations using Newton's method with or without line search
have been presented. Algorithmic details for the developed solvers, the main
computational steps and convergence tests are described. The usefulness of such
solvers is demonstrated by the results of an extensive performance investigation of
their numerical behavior, in comparison with the results obtained calling the
widely-used MATLAB functions care and dare. Randomly generated systems with
orders till 1000 (and even 2000), as well as the systems from the large COMPleib
collection, are considered. The numerical results most often show significantly

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

287

improved accuracy (measured in terms of normalized and relative residuals), and
greater efficiency. The results strongly recommend the use of such algorithms,
especially for improving, with little additional computing effort, the solutions
computed by other solvers.

Fig. 12. Bar graph showing the improvement of the MATLAB-style residuals for examples from the
COMPleib collection, using Newton solver with line search, default tolerance and initialization by

, or by the algorithm in [56], if possible, and by dare, otherwise. The height of the i-th

vertical bar indicates the number of examples for which the improvement was between and i
orders of magnitude.

Acknowledgments

This work was partially supported by the Institutional research programme PN
1819 „Advanced IT resources to support digital transformation processes in the
economy and society – RESINFO-TD” (2018), project PN 1819-01-01, „Modeling,
simulation, optimization of complex systems and decision support in new areas of
IT&C research”, funded by the Ministry of Research and Innovation, Romania.

References

[1] Anderson B. D. O., Moore J. B., Linear Optimal Control, Prentice-Hall, Englewood Cliffs, New

Jersey, 1971.
[2] Bini D. A., Iannazzo B., Meini B., Numerical Solution of Algebraic Riccati Equations, SIAM,

Philadelphia, PA, 2012.
[3] Lancaster P., Rodman L., The Algebraic Riccati Equation, Oxford University Press, Oxford,

1995.
[4] Mehrmann V., The Autonomous Linear Quadratic Control Problem. Theory and Numerical

Solution, Series Lect. Notes in Control and Information Sciences, Thoma M.,Wyner A., Eds.,
vol. 163, Springer-Verlag, Berlin, 1991.

[5] Francis B. A., A Course in H Control Theory, Series Lect. Notes in Control and Information

Sciences, vol. 88, Springer-Verlag, New York, 1987.

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

288

[6] Jungers M., Historical perspectives of the Riccati equations, IFAC-PapersOnLine, vol. 50, no. 1,
2017, 9535–9546, 20th IFAC World Congress, http://www.sciencedirect.com/science/article/
pii/S2405896317322176

[7] Messori M., Incremona G. P., Cobelli C., Magni L., Individualized model predictive control for
the artificial pancreas. In silico evaluation of closed-loop glucose control, IEEE Control Syst.
Mag., 38, no. 1, 2018, p. 86–104.

[8] Sima V., Algorithms for Linear-Quadratic Optimization, Pure and Applied Mathematics: A
Series of Monographs and Textbooks, Taft E. J., Nashed Z. (Series Eds.), vol. 200, Marcel
Dekker, Inc., New York, 1996.

[9] The MathWorks, Inc., Control System Toolbox User’s Guide. Version 9, 3 Apple Hill Drive,
Natick, MA, 01760–2098, 2011.

[10] Benner P., Kressner D., Sima V., Varga A., Die SLICOT-Toolboxen für Matlab, at —
Automatisierungstechnik, 58, no. 1, 2010, p. 15–25, ISSN: 0178-2312.

[11] Benner P., Mehrmann V., Sima V., Van Huffel S., Varga A., SLICOT — A subroutine library in
systems and control theory, Applied and Computational Control, Signals, and Circuits, Datta B.
N., Ed., Birkhäuser, Boston, MA, vol. 1, chapter 10, 1999, p. 499–539.

[12] Benner P., Sima V., Solving algebraic Riccati equations with SLICOT, Proceedings of The 11th
Mediterranean Conference on Control and Automation MED’03, June 18–20 2003, Rhodes,
Greece, 2003, 6 pages.

[13] Van Huffel S., Sima V., Varga A., Hammarling S., Delebecque F., High-performance numerical
software for control, IEEE Control Syst. Mag., 24, no. 1, 2004, p. 60–76.

[14] Arnold W. F. III, Laub A. J., Generalized eigenproblem algorithms and software for algebraic
Riccati equations, Proc. IEEE, 72, no. 12, (1984) 1746–1754.

[15] Laub A. J., A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat.
Contr., AC–24, no. 6, 1979, p. 913–921.

[16] Pappas T., Laub A. J., Sandell N. R., On the numerical solution of the discrete-time algebraic
Riccati equation, IEEE Trans. Automat. Contr., AC–25, no. 4, 1980, p. 631–641.

[17] Van Dooren P., A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci.
Stat. Comput., 2, no. 2, 1981, p. 121–135.

[18] Benner P., Byers R., Losse P., Mehrmann V., Xu H., Numerical solution of real skew-
Hamiltonian/Hamiltonian eigenproblems, Technische Universität Chemnitz, Chemnitz, Tech.
Rep., Nov. 2007.

[19] Benner P., Byers R., Mehrmann V., Xu H., Numerical computation of deflating subspaces of
skew Hamiltonian/Hamiltonian pencils, SIAM J. Matrix Anal. Appl., 24, no. 1, 2002, p. 165–
190.

[20] Raines A. C. III, Watkins D. S., A class of Hamiltonian-symplectic methods for solving the
algebraic Riccati equation, Washington State University, Pullman, WA, Tech. Rep., 1992.

[21] Sima V., Structure-preserving computation of stable deflating subspaces, Proceedings of the
10th IFAC Workshop Adaptation and Learning in Control and Signal Processing (ALCOSP
2010), Antalya, Turkey, 26–28 August 2010, Copyright 2010 IFAC, 6 pages,
IFACPapersOnLine, vol. 10, Part 1, http://www.ifac-papersonline.net/Detailed/46793.html,
Identifier 10.3182/20100826-3-TR-4015.00047.

[22] Sima V., Computational experience with structure-preserving Hamiltonian solvers in optimal
control, Proceedings of the 8th International Conference on Informatics in Control, Automation
and Robotics (ICINCO 2011), Noordwijkerhout, The Netherlands, 28–31 July, 2011, Ferrier J.-
L., Bernard A., Gusikhin O., Madani K., Eds., SciTePress — Science and Technology
Publications, vol. 1 (2011) 91–96, ISBN 978-989-8425-74-4. DOI 10.5220/0003534100910096.

[23] Byers R., Solving the algebraic Riccati equation with the matrix sign function, Lin. Alg. Appl.,
85, no. 1, 1987, p. 267–279.

[24] Gardiner J. D., Laub A. J., A generalization of the matrix sign function solution for algebraic
Riccati equations, Int. J. Control, 44, 1986, p. 823–832.

[25] Hammarling S. J., Newton’s method for solving the algebraic Riccati equation, National Physics
Laboratory, Teddington, Middlesex TW11 OLW, U.K., NPC Report DIIC 12/82, 1982.

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 3/ 2018

289

[26] Chu E.-W., Fan H.-Y., Lin W.-W., A structure-preserving doubling algorithm for continuous-
time algebraic Riccati equations, Lin. Alg. Appl., 386, 2005, p. 55–80.

[27] Guo P.-C., A modified large-scale structure-preserving doubling algorithm for a large-scale
Riccati equation from transport theory, Numerical Algorithms, 71, no. 3, 2016, p. 541–552,
http://dx.doi.org/10.1007/s11075-015-0008-4

[28] Lanzon A., Feng Y., Anderson B. D. O., Rotkowitz M., Computing the positive stabilizing
solution to algebraic Riccati equations with an indefinite quadratic term via a recursive method,
IEEE Trans. Automat. Contr., AC–53, no. 10, 2008, p. 2280–2291.

[29] Benner P., Contributions to the numerical solution of algebraic Riccati equations and related
eigenvalue problems, Dissertation, Fakultät für Mathematik, Technische Universität Chemnitz–
Zwickau, D–09107 Chemnitz, Germany, Feb. 1997.

[30] Benner P., Byers R., An exact line search method for solving generalized continuous-time
algebraic Riccati equations, IEEE Trans. Automat. Contr., 43, no. 1, 1998, p. 101–107.

[31] Kleinman D. L., On an iterative technique for Riccati equation computations, IEEE Trans.
Automat. Contr., AC–13, 1968, p. 114–115.

[32] Roberts J., Linear model reduction and solution of the algebraic Riccati equation by the use of
the sign function, Int. J. Control, 32, 1980, p. 667–687.

[33] Sima V., Benner P., Experimental evaluation of new SLICOT solvers for linear matrix equations
based on the matrix sign function, Proceedings of 2008 IEEE Multi-conference on Systems and
Control; 9th IEEE International Symposium on Computer-Aided Control Systems Design
(CACSD), San Antonio, Texas, U.S.A., September 3–5, 2008, Omnipress, 2008, p. 601–606,
ISBN: 9 78-1-4244-2221-0.

[34] Penzl T., LYAPACK Users Guide, Technische Universität Chemnitz, Sonderforschungsbereich
393, Numerische Simulation auf massiv parallelen Rechnern, Chemnitz, Tech. Rep. SFB393/00–
33, Aug. 2000.

[35] Penzl T., Numerical solution of generalized Lyapunov equations, Advances in Comp. Math., 8
(1998) 33–48.

[36] Sima V., Computational experience in solving algebraic Riccati equations, Proceedings of the
44th IEEE Conference on Decision and Control and European Control Conference ECC’ 05, 12–
15 December 2005, Seville, Spain, Omnipress, 2005, p. 7982–7987.

[37] Sima V., An efficient Schur method to solve the stabilizing problem, IEEE Trans. Automat.
Contr., AC–26, no. 3, 1981, p. 724–725.

[38] Varga A., A Schur method for pole assignment, IEEE Trans. Automat. Contr., AC–26, no. 2,
1981, p. 17–519.

[39] Mehrmann V., Tan E., Defect correction methods for the solution of algebraic Riccati equations,
IEEE Trans. Automat. Contr., AC–33, no. 7, 1988, p. 695–698.

[40] Ciubotaru B. D., Staroswiecki M., Comparative study of matrix Riccati equation solvers for
parametric faults accommodation, Proceedings of the 10th European Control Conference, 23-26
August 2009, Budapest, Hungary, 2009, p. 1371–1376.

[41] Leibfritz F., Lipinski W., Description of the benchmark examples in COMPleib, Department of
Mathematics, University of Trier, D–54286 Trier, Germany, Tech. Rep., 2003.

[42] Sima V., Benner P., A SLICOT implementation of a modified Newton’s method for algebraic
Riccati equations, Proceedings of the 14th Mediterranean Conference on Control and
Automation MED’06, June 28-30 2006, Ancona, Italy, Omnipress, 6 pages.

[43] Sima V., Computational experience in solving continuous-time algebraic Riccati equations using
standard and modified Newton’s method, Proceedings of the 10th International Conference on
Informatics in Control, Automation and Robotics (ICINCO 2013), Reykjavík, Iceland, 29-31
July, 2013, Ferrier J.-L., Gusikhin O., Madani K., Sasiadek J., Eds., vol. 1, SciTePress —
Science and Technology Publications, Portugal, 2013, p. 5–16.

[44] Sima V., Solving SLICOT benchmarks for algebraic Riccati equations by modified Newton’s
method, Proceedings of the 17th Joint International Conference on System Theory, Control and
Computing (ICSTCC 2013), October 11-13, 2013, Sinaia, Romania, IEEE (2013) 491–496,
ISBN: 978-1-4799-2228-4; 978-1-4799-2227-7.

 Sima V. / Numerical solution of algebraic Riccati equations by Newton’s method

290

[45] Sima V., Benner P., Numerical investigation of Newton’s method for solving continuous-time
algebraic Riccati equations, Proceedings of the 11th International Conference on Informatics in
Control, Automation and Robotics (ICINCO-2014), 1-3 September, 2014, Vienna, Austria,
Ferrier J.-L., Gusikhin O., Madani K., Sasiadek J., Eds., vol. 1, SciTePress — Science and
Technology Publications, Portugal, p. 404–409.

[46] Sima V., Computational experience with a modified Newton solver for continuous-time
algebraic Riccati equations, Informatics in Control Automation and Robotics, ser. Lecture Notes
in Electrical Engineering, Ferrier J.-L., Gusikhin O., Madani K., Sasiadek J., Eds., Springer
International Publishing, 325, ch. 3, 2015, p. 55–71, ISBN: 978-3-319-10891-9; 978-3-319-
10890-2; ISSN: 1876-1100.

[47] Sima V., Solving discrete-time algebraic Riccati equations using modified Newton’s method, 6th
International Scientific Conference on Physics and Control, San Luis Potosí, Mexico. August
26th-29th, 2013, IPACS Library, 6 pages.

[48] Sima V., Benner P., Numerical investigation of Newton’s method for solving discrete-time
algebraic Riccati equations, Proceedings of the 15th International Conference on Informatics in
Control, Automation and Robotics (ICINCO-2018), 29-31 July, 2018, Porto, Portugal, Madani
K., Gusikhin O., Eds., vol. 1, SciTePress — Science and Technology Publications, Portugal, p.
66–75.

[49] Sima V., Efficient computations for solving algebraic Riccati equations by Newton’s method,
Proceedings of the 2014 18th Joint International Conference on System Theory, Control and
Computing (ICSTCC 2014), October 17-19, 2014, Sinaia, Romania, Matcovschi M. H., Ferariu
L., Leon F., Eds., IEEE, 2014, p. 609–614, ISSN 978-1-4799-4602-0.

[50] Dongarra J. J., Du Croz J., Duff I. S., Hammarling S., Algorithm 679: A set of Level 3 Basic
Linear Algebra Subprograms, ACM Trans. Math. Softw., 16, no. 1, 1990, p. 1–17, 18–28.

[51] Van Huffel S., Sima V., SLICOT and control systems numerical software packages, Proceedings
of the 2002 IEEE International Conference on Control Applications and IEEE International
Symposium on Computer Aided Control System Design, CCA/CACSD 2002, September 18–20,
2002, Glasgow, Scotland, U.K., Omnipress, 2002, 39–44, ISBN: 0-7803-7388-X.

[52] Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum
A., Hammarling S., McKenney A., Sorensen D., LAPACK Users’ Guide: Third Edition, ser.

Software・Environments・Tools, SIAM, Philadelphia, PA, 1999.

[53] Golub G. H., Van Loan C. F., Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MA, 1996.

[54] Abels J., Benner P., CAREX—A collection of benchmark examples for continuous-time algebraic
Riccati equations (Version 2.0), SLICOT Working Note 1999-14, Nov. 1999. Available
www.slicot.org

[55] Jónsson G. F., Vavasis S., Solving polynomials with small leading coefficients, SIAM J. Matrix
Anal. Appl., 26, no. 2, 2004, p. 400–414.

[56] Armstrong E. S., Rublein G. T., A stabilization algorithm for linear discrete constant systems,
IEEE Trans. Automat. Contr., AC-21, no. 4, 1976, p. 629–631.

