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Abstract. In many technical problems, the rapid magnetic field problem computation can 

be performed by adopting a magnetic circuit model. Beside some very simple Kirchhoff 

equations, there are also necessary the constitutive relationships mu  corresponding to 

the magnetic circuit branches (MCB), where   is the fascicular magnetic flux and mu  is 

the magnetic voltage. This paper presents a procedure to determine these relations, by 

solving the magnetic field problem under certain boundary conditions for MCB. The 

nonlinearity of the B-H characteristic is treated using the polarization method and the 

iterations are performed in terms of magnetic field strength H correction. 

 
Keywords: nonlinear magnetic circuit branches, polarization method, scalar magnetic 

potential. 

 

1. Introduction 

 
The magnetic field problems computation takes place, in general, by using 

differential, integral or hybrid numerical procedures. For 3D structures the 

computation effort can be great, especially if some modifications in field sources or 

problem geometry are taken into account. The nonlinearity is addressed by using 

the Newton-Raphson method (NRM) or by the polarization fixed point method 

(PM) [1]. For NMR, if this method is convergent, then the convergence speed is 

bigger than that corresponding to PM. More, for PM the convergence is always 
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provided and the convergence speed can be greatly accelerated by using a dynamic 

over-relaxation procedure [1, 2].  

In some structures, the magnetic field computation can be simplified if we adopt a 

magnetic circuit model. In some cases, the mu  characteristic of the MCB is 

determined, by solving the magnetic field problem only in the domain 

corresponding to each MCB. For this reason, sometimes, it is sufficient to adopt a 

2D or 1D model.  

The advantage of using the MCB is even more important if the same MCB is used 

in many structures, in which the sources or other branches can be different. For 

example, in [3–5], a new equipment is proposed. This equipment allows the 

efficient determination of the static B-H characteristic.  

The procedure for B-H characteristic determination implies the computation of a 

magnetic field inverse problem. The use of a numerical procedure for stationary 

magnetic field problems necessitates a huge effort and, sometimes instabilities can 

occur.  

The use of a magnetic circuit model, for the case of measurement on samples, 

reduces a lot the computation effort [6]. The equipment analyzed in [6] admits 

MCB whose mu  relations can be obtained using 3D models. To increase the 

equipment’s performances, it is useful to use field concentrators, which cannot 

admit 2D models. 

In this paper, we present the procedure for determining mu  for MCB with 3D 

structures. 

 

2. The magnetic circuit branch 

 
Fig. 1. The magnetic circuit branch. 
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Let us consider the domain , without electric current (J=0), with boundary  

(Fig.1), where the magnetic field (B,H) verifies the following boundary conditions:  

() on disjoint surfaces 1S , 2S , the tangent component of the magnetic field 

strength H is null;  

() on the rest of the boundary 0S , the normal component of the magnetic 

induction B is null. 

The conducting domain  with the boundary conditions (), () is called magnetic 

circuit branch.  

Because in  we have H =0, it results the scalar magnetic potential ( mV ) 

theorem  is valid. From the boundary condition (), it results the surfaces 1S , 2S  

are magnetically equipotential. They are called magnetic terminals. We denote by 

1mV  and 2mV  the potentials corresponding to these terminals. The magnetic voltage 

of the magnetic circuit branch mu  is defined as the magnetic voltage along any 

curve C which connects the two terminals. We have: 

21 mm

C

m VVdu   lH         (1) 

From the boundary condition (), it results that it is well-defined the magnetic flux 

of the magnetic circuit branch, called the fascicular flux, as being the magnetic flux 

through any transversal section S of the resistor. 

 

S

dSnB            (2) 

We assume the constitutive relation B=F(H) is Lipschitz: 

      )(
2L,  H",H'H"H'H"H' FF      (3) 

and coercive: 

       )(
22

L,,'  H",H'H"H'H"H'H"H FF     (4) 

 

where  <  and >0 and the scalar product is: 

",' HH = 


 d"' HH         (5) 

where d  is the volume element. If in almost all points  P  from   the local 

constitutive relation B( P )=f(  P ,H(  P )) is Lipschitz: 

      3)()()()()()( RPPPPPPPfPPf  H",H',H"H')(H",H',  

 (6) 

and coercive: 
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    

  3

2

)()(                                                                            

,)()()()()(,)(,)(',

RPP

PPPPPPPfPPf





H",H'

H"H'H"H'H"H 
 (7) 

where  (P)<<  and (P)>>0, then the relations (3), (4) are valid. 

According to the uniqueness theorem of the stationary fields 6, if the magnetic 

voltage mu  is given, then the magnetic field (B,H) is uniquely determined and so 

the fascicular magnetic field   is uniquely determined. The following function it is 

therefore well-defined: 

 )( mm uu 


          (8) 

For linear media, the function f is linear and relation (3) becomes: = mu , where 

  is the MCB permeance. 

Also, if the fascicular flux is given, it uniquely results the magnetic voltage. 

 

3. Nonlinearity treatment 

 

We admit the magnetic voltage mu  is given, so the magnetic voltage 1mV  is known, 

considering 2mV =0. The MCB nonlinearity is treated using the Newton-Raphson 

method (NRM) or the polarization method (PM).  

The second method (PM) is chosen and, because the magnetic potential is given, 

from which results H, the correction in H is used [1].  

The constitutive relation B=F(H) is replaced by: 

)( MHB              (9) 

the computation magnetization M being corrected function of H: 

 HHM  )(
1

F


= )(HG          (10) 

Locally: 

  )()(,
1

)( PPPfP HHM 


=  )(, PPg H      (11) 

If, in each point P, the computation permeability )(P  it is chosen with the 

restriction:  

)(P >
   

"'

",',

2

1

3",' HH

HH

HH 





PfPf
Sup

R

,      (12) 

the function g is a contraction [1]. 
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      3)),))))((),))( RPPPPPPPPgPPgP  (((H"(H'(H"(H', H",H' , 

with )(P <1    (13) 

It results also the global function G is a contraction: 

      )(
2L,  

 H",H'H"H'H"H' GG , cu   1)( 


 PSup
P

 

 (14) 

where: 


",' HH = 



 d"' HH         (15) 

For any of two computation magnetizations )(LM",M'  2
, there are the unique 

magnetic fields (B’,H’), (B”,H”), which verify the relation (9) and they have the 

same boundary conditions [8] (the function )(MHM W
W

  is well-defined).  

The difference magnetic field ),( dd HB =(B’,H’)-(B”,H”) verifies the relation: 

dd ,HB =0          (16) 

and, from relation (9) it results: 

dd ,HM + dd ,HH =0        (17) 

from where: 

 dddd

2

d , MHHMH       (18). 

So the function W is non-expansive: 

      )(
2L,  

M",M'M"M'M"M'M"M' WW   (19) 

For an arbitrary initial value )(
M

0 , the polarization method builds the sequences 

  1k
k)(

M ,   1k
k )(

H  with the relations: 

)M(H
)()( 1 kk W , )H(M

)()( kk G ,  1k      (20) 

Taking into account that W is non-expansive and G is a contraction, the composed 

functions GW o  and WG o are contractions and   1k
k)(

M ,   1k
k )(

H  are 

Picard-Banach convergent sequences. 

 

4. Magnetic field computation at each iteration 

 
The magnetic potential is determined by solving the equation:  

M  mV          (21) 

using the finite element method.  On the boundaries 1S  and 2S , mV 1mV  and, 

respectively mV 0 and on 0S , nB = nn MH   =0.  
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We impose nH =
n

V




   and it results nM =0.  

Dividing the domain   in a tetrahedrons mesh, we approximate: 

mV 



N

p

ppvV

1

0                    (22) 

where pv are order 1 nodal elements, N is the number of nodes inside the domain 

  and surface 0S  and 0V  verifies the boundary condition on surface 1S : 





1

1

1

1

10

N

p

pm vVV           (23) 

where 1p  is a node index from the surface 1S . The relation (21) is projected on 

functions qv , then it is integrated by parts and the following algebraic equations 

system is obtained: 




N

p

ppqa

1

,  = qb ,  q=1,2,…,N        (24) 

where: 




 dvva pqpq ,          (25) 

and taking into account that  nM =0, 

qb = 


 dvq M 
 


1

1

1

1

1

N

p

qpm dvvV      (26) 

 

By solving the system from (24) we obtain the weights p  of the nodal 

elements pv  and the approximate shape (22) of the scalar magnetic potential. 

 

Remarks:  

a) pv , M  and the integrands from relations (25) and (26) are constant in each 

tetrahedron. The expressions (25) are not zero only when the nodes p and q edge 

the same branch or coincide. It results the system (24) (symmetric) has sparse 

matrix. 

b) The approximation using the finite element of the magnetic filed problem 

computation is non-expansive: 


HH 
aprox,

 [9], such that the PM 

convergence is preserved. 

 



 

 

 

 

 

 

Journal of Engineering Sciences and Innovation, Vol. 3, Issue 1 / 2018 

 

 

 

 

 

 

 

 

65 

5. Illustrative example 

 

 

Fig. 2.The magnetic circuit branch. 

 

 

  

Fig.3. The B-H characteristic. 
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Fig. 4. The discretization mesh. 

 
Let’s consider the MCB from Fig. 2, having the medium with the B-H 

characteristic from Fig. 3. The discretization mesh is depicted in Fig. 4, having 

2073 nodes and 10037 tetrahedral elements. The characteristic mu  from Fig. 5 

is obtained. 
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Fig. 5. mu characteristic. 

 

6. Conclusions 

 
As results from Figs. 2 and 4, the MCB structure cannot be analyzed employing a 

2D model. In this paper we presented a procedure for obtaining the mu  

characteristic, in which the nonlinearity is treated by using the polarization method, 

and the magnetic field computation takes place, at each iteration, by using the 
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scalar magnetic potential. The correction of the fictitious magnetization takes place 

in H, ensuring therefore the convergence of the approximate iterative procedure. 

Because, to increase the scalar magnetic potential 1mV , a constant step has been 

chosen, the variation of the fascicular magnetic flux is big for small values of 1mV  

and it decreases when this potential increases (see Fig.5). Obviously, we can 

choose a variable step for increasing 1mV  and the differences of increasing   are 

diminished. 

To raise the mu characteristic, the magnetic potential vector A can be also used, 

therefore resulting the fascicular magnetic flux on any closed curve from the 

surface 0S  (curl A).  The use of the nodal and edge elements (for all edges) leads 

to a system of equations with big dimensions, which contains the gauge condition, 

beside the differential equation of A. The system’s dimensions can be reduced if 

we use the edge elements of the vertexes from the edges co-tree [10]. The 

boundary condition for tA  is imposed on the vertexes which close the loops from 

the boundary. Because the MCB medium is ferromagnetic, the use of the scalar 

magnetic potential does not lead to instability on the separation surfaces between 

air and iron. 
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