
 

 

Journal of Engineering Sciences and Innovation 
Volume 2, Issue 4 / 2017, pp. 37-48 

 
    Technical Sciences 

    Academy of Romania                  A. Mechanics, Mechanical and Industrial Engineering, 
         www.jesi.astr.ro                                                                Mechatronics 

Received 10 August 2017   Accepted 22 November 2017 
Received in revised from 16 October 2017 

 
Precise estimation of the resonant frequencies of mechanical 

structures involving a pseudo-sinc based technique 
 

GILLICH GILBERT-RAINER*, MINDA ANDREA AMALIA, KORKA 
ZOLTAN-IOSIF 

 
Universitatea “Eftimie Murgu” din Resita, P-ta Traian Vuia 1-4, 320085 Resita, Romania 

 
Abstract. This paper presents a technique based on the pseudo-sinc function, defined by 
the authors, that is used to evaluate resonant frequencies with high precision as required in 
many engineering applications. Standard evaluation methods used to find the real frequency 
fail because the result depends on the acquisition time, which defines the position of the 
spectral lines. Commonly, interpolation, involving the amplitude peaks displayed on several 
spectral lines located around the maximizer, is employed to improve the frequency 
readability. The results can be improved in this way, but the achieved precision still 
depends on the acquisition time. This paper discusses the reason for leakage and proposes a 
new interpolation technique that is made for several maximizers attained by iteratively 
truncating the original signal. It was demonstrated that the maximizer obtained in this way 
fit on a pseudo-sinc function that is not symmetric, as assumed in the actual interpolation 
methods. 
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1. Introduction 
 
Precise evaluation of the resonant frequencies is important in many engineering 
applications for identifying the structures’ mechanical parameters [1] or changes of 
those parameters, used for instance to detect the occurrence of cracks in beams or 
plates [2]-[5]. Because the resonant frequencies still are the features most easily 
found from measurements, those shifts due to damage are qualified for use in 
structural health monitoring, even if they are considered to have low sensitivity to 
damage [2]. This supposition is made, because the frequencies evaluated with 
standard methods, as in all predefined frequency evaluation applications, are 
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indicated on lines whose position in the spectrum is determined by the acquisition 
time. This happens because the frequency resolution, i.e. the distance between two 
consecutive spectral lines is the inverse of the signal length. Thus, a frequency shift 
is observed if the effect of the perturbation is higher as the half of the frequency 
resolution [6]-[7]. Since the acquisition time is often one second or lower, the 
frequency resolution is bigger than 1Hz, and therefore, the shift is observed just if 
it exceeds 0.5Hz, as shown in [8]. Accordingly, to get precise results, advanced 
evaluation techniques are requested. The signal is processed after it was acquired; 
the most common approach is to apply an interpolation algorithm. 
The simplest actual attempts, made to improve the frequency readability, are based 
on interpolation techniques which always consider the maximizer (the spectral line 
that has associated the highest amplitude in the frequency range of interest) and 
one or two neighbors [9]-[14]. It is worth mentioning that the employed frequency-
amplitude pairs always belong to the same spectrum. Results achieved by such 
interpolation get increased precision, but further depend on the acquisition time or 
signal length. The reason of failure is detailed in next section.    
The study presented herein introduces a technique based on evaluating the 
frequency from one overlapped spectrum that contains maximizers form different 
spectra, each of them achieved for a different analysis time length. In our prior 
research, the interpolation was done considering that these points belong to a 
second-order polynomial. In this case, the evaluated frequencies are not signal-
length sensitive and errors were very small compared to other methods. Later, we 
found out that the maximizers are distributed in accordance to a pseudo-sinc 
function, which is not symmetrical with the real frequency. Herein, we present this 
pseudo-sinc function and justify why it should be used instead of the ordinary sinc 
function. 
 
2. Errors occurred in standard frequency evaluation due to leakage   
 
We first conducted researches to establish the precision of a standard frequency 
evaluation method. To this aim, we consider a harmonic signal with known angular 
frequency  and amplitude a. This continuous signal )cos()( ttx   is represented 
in the discrete form as [15]: 

    [0], [1],..., [ ],..., [ 1]x x x x k x N   (1) 

In this relation, the individual elements of the sequence are: 
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The power of the function cos is leaked out from its real frequency component into 
the components of the Fourier series representation. The real coefficients for a 
signal having the length in time domain TS result as: 
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Here, j is the spectral line number and 0  the angular frequency resolution. 

If   is large enough, the second term in Eq. (4) can be neglected. Taking this into 
consideration and substituting   with 2 f , Eq. (4) can be expressed in terms of 

frequency as: 

 
sin 2 ( )

sinc(2 ( ) )
2 ( )

m S
j m S

m S

f j f T
a f j f T

f j f T





 

   
 

 (5) 

In this relation, f  is the frequency resolution (the distance between two 

consecutive spectral lines), and mf  is the true frequency of the generated signal. In 

real applications, mf  has the meaning of the measured frequency. 

The closer fj  approaches to the value of mf  , 0 fjfm  and so, the sinc 

function approaches to value 1. Consequently, aj approaches the true amplitude a. 
The more fj  moves away from the value of mf , the denominator in the sinc 

function becomes larger. So, the coefficient ja , given by the sinc function, 

becomes smaller.  
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Fig. 1. The spectrum indicating the amplitudes for the sinc function. 

  
Analyzing the amplitudes graph shown in Fig. 1, we notice that for the signal 
having the frequency of 5Hz, acquired for TS = 1s the true amplitude 1a   is 
indicated on the spectral line 5j  . Accurate results are obtained because 
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0mf j f   . If the signal is lengthened or shortened, leakage occurs and the 
spectral line presumed to indicate the frequency will be removed. In this way, 
incorrect frequency is indicated; also the amplitude is wrongly calculated, as aj is 
displayed in the spectrum. 
 
3. Current interpolation methods and the reason for their failure   
 
As shown in [16], to determine the real frequency, it is necessary to find a curve 
that performs the interpolation between three points with an amplitude peak of Aj-1, 

Aj  and Aj+1. The central amplitude, attaining biggest value among the three points, 
is denoted as maximizer.  
To find the real frequency, we must first determine Amax that is the maximum of the 
curve containing these points obtained from the Discrete Fourier Transform (DFT). 
Afterwards, the corrected frequency fcorr is determined by adjusting the measured 
frequency with a fractional correction term δ. 
 

 
Fig. 2.  The three points in the spectrum used for interpolation. 

 
The formulas with which the correction term δ and the corrected frequencies are 
calculated, for the interpolation algorithms using two points, are given by Grandke 
[9], Quinn [10] and Jain et al.[11]. On the other hand, Ding et al [12], Voglewede 
[13], Jacobsen and Kootsookos [14] involve algorithms using three points of the 
spectrum. A comprehensive discussion regarding the achieved precision by each 
method is made in [17], based on a generated signal with the frequency 5 Hz and 
an acquisition time of around 1 second. 
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Fig. 3. Accuracy of interpolation methods that consider two points in the DFT [17]. 
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Fig. 4. Accuracy of interpolation methods that consider three points in the DFT [17]. 

 
Analyzing the accuracy of these interpolation methods, it is found that, when the 
signal contains an integer number of cycles, so when TS = 1s, the correct frequency 
is obtained. If this is not the case, the standard frequency estimation method fails in 
indicating the true frequency [17]. If the time varies between 0.9 s and 1.1 s, a 
10% deviation is obtained for the methods considering one maximizer neighbor 
and 5%, if two neighbors of the maximizer are used [18]. 
The accuracy of these methods is not sufficient to solve mechanical engineering 
problems that require high precision. For this reason, we developed a method 
which iteratively crops the signal until a maximum is clearly attained at the spectral 
line of interest [19]-[22]. This indicates that the signal contains an entire number of 
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cycles for the studied frequency component and the measured frequency is 
compatible with the frequency resolution.  
 

 
Fig. 5. Overlapped-spectrum achieved for numerous analysis times [22]. 

 
A typical representation of the overlapped spectrum containing numerous 
maximizers is presented in Fig. 5. Each of the maximizers shown in this figure 
belong to an individual spectra obtained for a particular analysis time. By 
identifying the highest amplitude, one can read the frequency associated to it, 
which is considered (and extremely close to) the true one. This method is fairly 
precise, errors being less than 0.5%.   
 
4. The pseudo-sinc function proposed for an advanced estimation technique 
 
For damage detection methods even more precise frequency estimation is 
requested. To this end, we studied the sinc function by comparing it with 
maximizers achieved from spectra obtained for different signal time lengths; this 
comparison is presented in Fig. 6. In this figure, one can observe a discrepancy 
between the sinc function (which is generally agreed to correctly indicate the 
maximizer for different signal time lengths) and the maximizers obtained by 
simulation for a generated signal with known frequency. This happens because, by 
changing the analysis time length TS the frequency resolution f=1/TS also changes, 
so when the signal is truncated and the overlapped spectrum is obtained, the 
spectral lines are not equidistant [16].  
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Fig. 6. Comparison between the sinc function (continuous line) and maximizers achieved by 

simulation (square-shaped points). 
 
For a longer analysis time, the differences observed in Fig. 6 are no longer noticed, 
thus the errors achieved by frequency estimation are small and so the sinc function 
can be successfully used [17]-[20]. This is not the case of signals acquired for 
damage detection, because the amplitude of vibration signals achieved from free 
vibrating structures decrease rapidly, especially for the higher modes. As a 
consequence, the sinc function cannot be used for an accurate frequency evaluation 
[21]-[22]. Instead of it, we propose the use of a pseudo-sinc function which better 
fit the reality. 
We performed experiments to find out if the pseudo-sinc function maintain its 
shape and fit the maximizers for any frequency and signal length. The generated 
signals, employed in the analysis, have following parameters: f the true frequency, 
a the true amplitude, TS the analysis time of the original signal which is generated 
using NS samples, n the number of cycles of length 1/T f contained in the original 
signals. The true amplitude a is always set as 1 and four signals, denoted with 
indices 1...4h  , and having frequencies 5Hz, 7Hz, 10Hz and 14Hz are analyzed. 
Three analysis time lengths are derived for each signal k considering 10, 15 
respectively 20 cycles of period T. All these signals contain initially 

15000SN  samples resulting different sampling rates r. A comprehensive 
overview regarding the involved parameters is presented in Table 1. 
The four original signals are shortened and lengthened 12 times, by subtracting 
respectively adding 50 samples, iteratively. As a result, we obtain graphs as this 
presented in Fig. 7. One can observe that the amplitude a, in fact the coefficient aj 
in Eq. (5), decreases if the spectral lines shift from that indicating the true 
frequency. In addition, it clearly results that increasing the time length ST nT the 
curve becomes narrower.  
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Table 1. Parameters set for generating the original sinusoids to be analyzed  
h fi [Hz] T [s] n Ts [s] Ns [-] r [Hz] 

1 5 0.2 
20 4

15000 
3750 

15 3 5000 

10 2 7500 

2 7 0.142857143 
20 2.857143 

15000 

5250 

15 2.142857 7000 

10 1.428571 10500 

3 10 0.1 
20 2 

15000 

7500 

15 1.5 10000 

10 1 15000 

4 14 0.071428571 
20 1.428571429 

15000 

10500 

15 1.071428571 14000 

10 0.714285714 21000 

 
By performing a regression analysis for the points attained by applying the above 
presented procedure, we noticed that the best fit is achieved for a 5th order 
polynomial curve, of the form: 

 5 4 3 2
5 4 3 2 1 0y C x C x C x C x C x C       (6) 

The regression curves for this order cross all points in the graph, proved by the 
coefficient of determination 2 1R  , as shown in Fig. 7 for the case 1h  . For this 
signal, having the frequency 1 5Hzf  , we obtained different curves for different 
number of cycles. The achieved coefficients are presented in Table 2. 

Table 2. Coefficients of interpolation curves for the signal with frequency 5Hz 
n C5 C4 C3 C2 C1 C0 

20 -137.94 3616.1 -37826 197381 -513814 533852 

15 -46.867 1229.4 -12865 67137 -174725 181423 

10 -9.6553 253.17 -2647 13792 -35806 37051 
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Fig. 7. The interpolation curves for f=5Hz  
 
Then, we normalized the coefficients of the interpolation polynomials by dividing 
each of them to the first coefficient: 

5 5 5 4 4 5 3 3 5 2 2 5 1 1 5 0 0 5/ ; / ; / ; / ; / ; /c C C c C C c C C c C C c C C c C C       (7) 

or in the general form: 

 5/ 0...5m mc C C m   (8) 

For the analyzed case, considering a number of 20, 15 and 10 cycles, respectively, 
we have the normalized coefficients listed in Table 3. 
 

Table 3. Normalized coefficients of interpolation curves for the signal with frequency 5Hz 
n c5 c4 c3 c2 c1 c0 

20 1 26.21502 274.2207 1430.919 3724.909 3870.175 

15 1 26.23168 274.5002 1432.5 3728.103 3871.018 

10 1 26.22083 274.1499 1428.438 3708.43 3837.374 

Table 3 shows that the shape of the curve is the same regardless of the number of 
cycles we consider. The normalized coefficients of interpolation curves for 
different frequencies, for n=10 cycles, are listed in Table 4. 
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Table 4. Coefficients for the signal containing n=10 cycles for different frequencies  
f [Hz] C5 C4 C3 C2 C1 C0 

5 1 26.22083 274.1499 1428.438 3708.43 3837.374 

7 1 36.70863 537.3252 3919.456 14245.53 20637.78 

10 1 52.44614 1096.719 11428.57 59340.4 122807.4 

14 1 73.41726 2149.301 31355.65 227928.5 660408.8 

 
It is noted that the coefficients are in the ratio: 
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so that the coefficients for another frequency, but the same number of cycles, can 
be calculated by the formula: 
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Based on Eq. (8), it is possible to determine the coefficients for any frequency f2 if 
those for the frequency f1 are known. In Table 5 we have the coefficients calculated 
by this formula for 7 Hzf   and in Table 6 these for 10Hzf   if the reference 
frequency is 5Hzf  . These coefficients are compared with the coefficients 

obtained by interpolating the points which we get from the measurements for the 
same frequency, both tables indicating also the errors between the sets of 
coefficients. 

 
Table 5. Coefficients of interpolation curves for the frequencies of 5Hz and 7 Hz  

f [Hz] C5 C4 C3 C2 C1 C0 

5 1 26.22083 274.1499 1428.438 3708.43 3837.374 

translated from 5 to 7 1 36.70916 537.333899 3919.63460 14246.3030 20638.31 

7 1 36.70863 537.3252 3919.456 14245.53 20637.78 

Error [%] 0 -0.00146 -0.00161 -0.00455 -0.00543 -0.00263 

 
 

Table 6. Coefficients of interpolation curves for the frequencies of 5Hz and 10 Hz 
f [Hz] C5 C4 C3 C2 C1 C0 

5 1 26.22083 274.1499 1428.438 3708.43 3837.374 

translated from 5 to 10 1 52.44166 1096.6 11427.51 59334.87 122796 

10 1 52.44614 1096.719 11428.57 59340.4 122807.4 

Error [%] 0 0.008531 0.010832 0.009321 0.009321 0.009321 

 
Eq. (9) proves that the shape of the pseudo-sinc function is maintained unaltered, 
being possible to obtain the coefficients for a given number of cycles and 
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frequency if these are known for a different frequency and number of cycles 
contained in the signal. This is confirmed by the extremely small errors attained by 
frequency translation. 
 
5. Conclusions 
 
In this paper we describe the evolution of the coefficient providing the signal 
amplitude in the case that the analyzed signal length is not a multiple of the period, 
i.e. it does not comprise an entire number of cycles. We have shown that leakage 
does not affect the amplitude in concordance with the sinc function, as current 
literature indicate it, but in concordance to a pseudo-sinc function. Because the 
spectral lines are not equidistant, the pseudo-sinc function is not symmetric, and 
actual interpolation methods fail in precise estimating frequencies. However, if the 
signal contains a large number of cycles, the errors can be diminished.  
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