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Abstract. The critical state of structures simultaneous loaded with different loads is 

analised taking into account the principle of critical energy. The general case is considered 

when the material behavior is non-linear according to the power law.  

The critical state is correlated with the deterioration produced by cracks and with the 

residual stresses. General relationships have been deduced for the correlation of loads or 

stresses acting on a cracked structure having residual stresses. The theoretical relationships 

were verified against results reported in literature. 
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1. Introduction 

 

The objectives of this paper are as follows: 

a. to establish relationships for: 

- the critical local loads and critical local stresses of a structure, taking into 

account the deterioration and the residual stresses; 

- local deterioration for cracked structure, on the basis of experimental data; 

b. to establish relationships for the superposition of different stresses with the 

consideration of critical local loads, 

- in the case of loading with two different loads; 

- in the case of tubular junctions loaded by internal pressure and bending moment. 
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All these cases will be solved by using the principle of critical energy  

 

2. Principle of critical energy (PCE) 

For structures without cracks and without residual stress, superposition or 

cumulation of loads is currently solved in the classical way, using a stregth theory 

[1]-[3], or by summing up the reported loads at a given power, as a result of applying 

the principle of critical energy [4] - [19]. 

In this paper, the load’s superposition of the mechanical structures is evaluated on 

the basis of the critical energy principle. The principle of critical energy formulated 

on the basis of the concept of the specific energy participation postulates [20], 

"During the evolution of a phenomenon or process, the critical state is reached 

when the total participation of the specific energies involved becomes equal to the 

critical participation." 

PCE introduces concept of specific energy participation, a dimensionless variable.  

The total participation of specific energies, introduced by loads Yi takes into 

account the sense of the external load in relation to the evolution of the process or 

phenomenon analyzed, as a sum of the individual participations Pi corresponding to 

each load Yi. 

  
i

iiT YPP . (1) 

One consider the general case of nonlinear behavior power function, according to 

the relationship: 

 kXCY   (2) 

where Y is the external load, X - the effect of the load, C and k - constants of the 

material. 

The total participation of specific energies for the behavior described by the 

power law is [7; 8], 

  
i

i

Y

i cri

i
T

Y

Y
tP δ

1α

,



















 , (3) 

where it has been considered the general case when the total participation is time 

dependent (t); Yi,cr is the critical value of Yi; the exponent ii k1α   depends on the 

behavior of the material under load and δY is 1, if the load Y acts in sense  of the 

evolution of phenomenon or process; 0 if it has no effect; -1, if the Y load opposes 

the evolution of the phenomenon or process. 

The critical participation  tPcr  is  a dimensionless value, time-dependent (t), also 

dependent by total deterioration   tDT  and by residual stress participation  resP , 

       resTcrcr PDPtP  00 , (4) 

where  tDT is the sum of the individual deteriorations calculated in relation to the 

critical state, produced by cracks, pretension, corrosion, erosion, creep, hydrogen, 

neutrons, etc. 



 

 

 

 

 

 Journal of Engineering Sciences and Innovation, Vol. 2, Issue 3 / 2017 11 

 

 

The residual stress' participation in relation to the critical state is, 
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where σres is the residual stress, σu - ultimate stress, and δres has the meaning of δy,i, the 

factor of external load beeing σres instead of Yi. 

       Pcr(0) is the critical participation at moment t=0; it is a stochastic value because 

the values of the mechanical characteristics are stochastic. 

In design, a unique values of mechanical characteristics is used such as 

  10 crP . 

 

Evaluation of the result of the loading. If: 

    tPtP crT   - the loading is subcritical; 

  (6) 

    tPtP crT   - the loading is critical or overcritical. 

 

3. Calculation of deterioration, critical local load and critical local stress of a 

structure with cracks 

 

Here are reproduced some results obtained in the paper [20]. 

The loading state becomes critical if     tPtP crT  , where from results,  
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Since, generally, the stresses are directly proportional to the applied loads, 

ii Y~σ , the relation (7) may be written on the bases of the stresses, as follows, 
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 (8) 

where σi,cr is the critical value of σi in analysed case, and 
ii Yδδσ  . 

a. Cracks with depth a and length 2c or with angular extension 2θ (Fig. 1). The crack 

width is negligible. 

For a structure builded from a material with known mechanical characteristics 

  10 crP , without residual stresses, whose deterioration is produced only by a 

crack having a depth a and a length 2c from relationship (8), by replacing 

   caDtDT ;  results, 
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Fig. 1. Cracks at the outer surface, of a tubular specimen , of depth a, length 2c (a) or angular 

extension 2θ (b). 

 

 cai,cr ;σ  is the critical stress of the structure with crack. By replacing the stress 

σ in the relation (9) with its value  cai,cr ;σ at breaking of the crackt specimen, the 

deterioration caused by the crack, obtains, 

 

     
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cricri cacaD σ
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,, δσ;σ1;  


, (10) 

where i,crσ  is the critical stress of the specimen without crack. 

Table 1 lists the deterioration values calculated with the relationship (10), based 

on the experimental data obtained from the testing of steel specimens with crack. [22; 

23]. 

 

b.From the relationship (9) written for uniaxial loading with stress σ, the critical local 

stress of the structure with crack (a; c), obtains 

      1α

1

;1σ;σ  caDca crcr , (11) 

where σcr is the critical stress of the crackless structure. 

It is known on the Pellini-Puzak diagram of experimental analysis of the behavior 

at the low temperature of the cracked steels [24] that the ultimate stress is reduced, 

sometimes reaching less thanyield stress   yu ca σ;σ  , in which case the material 

behaves brittle. This validates the relation (11). 

Also based on PCE, it was established the expression of critical stress for a 

specimen with crack with depth a, depending on the stress intensity factor in mode I 

fracture, KI, and separately, depending on the crack tip opening displacement 

(CTOD), δI [12]: 
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Table 1. Deterioration values for specimens with crack on tensile loaded  [21 - 23] 

 

No  a/s θ/π 
Deterioration 

D(a;c) 

1. 

• Tubular specimen with 

nonpenetrated circumferential crack at 

an angle β, , on external surface 

 

0.5 1.0 0.2278 

0.5 1.0 0.9811 

  Crack length (2c = 20 mm) 
Deterioration  

D(a;c) 

2. 

• Rectangular specimen (20x6 mm) 

on tensil loading 

 

 

0.994 

 

0.914 

 

0.99 
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where k1α   and k is the exponent of the behavior law (2) written for stresses 

 kM εσ σ  ) where ε is the strain; Mσ and k constants of the material; KIc is the 

fracture toughness in mode I of fracture (critical value of KI); δIc critical value of δI. 

The first relation (12) contains the concept of stress intensity factor, KI, which when 

applied in the area of linear behavior (k = 1), lead to, 
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in which case    2; ICI KKcaD  . 

The relations (12) şi (13) take into account only the depth of the crack, a, because 

aK I ~ . Relationships proposed in this paper through the concept of deterioration 

take into account both, the depth a and the length 2c of the crack. 

c. For a single load, Y, in the particular case when   10 crP ,   0tPres , and the 

deterioration    caDtDT ; is determined only by the crack, the relation (11) 

becomes    caDYY cr ;1
1α




 . On this basis the local critical load of structure with 

cracks, is, 

      1α

1

;1;  caDYcaY crcr  , (14) 

where Ycr is the critical load for the structure without crack. 

 

c. For a single load, Y, in the particular case when   10 crP ,   0tPres , and the 

deterioration    caDtDT ; is determined only by the crack, the relation (11) 

becomes    caDYY cr ;1
1α




 . On this basis the local critical load of structure with 

cracks, is, 

      1α

1

;1;  caDYcaY crcr  , (14) 

where Ycr is the critical load for the structure without crack. 

 

4. Deterioration of a structure with a quasi-crack. 

 

Generally, the influence of the cracks width is negligible, this is whay the  

deterioration only depends on the depth and the length of the crack. The quasi-crack 

are crack that have a relatively small width e (e ≤ 1 mm); they are very narrow 

channels. In this case, the deterioration depends on all three dimensions, 

 ecaDDT ;; . 

Critical values for structures without residual stresses  0resP  is calculated by the 

relations, 
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From the second relation (15) it can calculate the deterioration based on the 

experimental results with specimens without or with cracks, namely, 
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Generally, one uses  a deterministic value for the critical stress of the specimen 

without crack  cri,σ , which requires consideration of   10 crP . In relation (16) 

);;( ecacr  is the critical stress for the specimen with a quasi-crack, and cr  is the 

statistic average of critical stress for a non-cracked specimen.  

Figure 2 shows the variation of the deterioration calculated with the relation (16) 

for cracked  steel specimens with rectangular section subjected to tensile stress. 

 

 

Fig. 2. Variation of deterioration in relation to the width e of the penetrated quasi-

crack (a = s) of specimens with rectangular section (width 20 mm and thickness s = 

2 mm) subjected to tensile stress .The quasi-crack is perpendicular to the direction 

of the stress [25]. 
 

4. Loads superpositions 

 

One takes into account cracked structures without residual stress. Accordingly, 

   caDtPcr ;1 . 

a. Single load or single stress loading  

Accordingly, the relations (7) and (8) become, 
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which means that in fulfilling these conditions, either σ or Y achieves the critical 

state. 
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b. Simultaneous action of two different loads, Y1 and Y2; the relation (7) becomes, 
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where Y1,cr and Y2,cr  are the critical values for the non-cracked structure. Considering 

critical local stresses for the structure with crack (14), relation (18) becomes, 
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where generally, 
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c. Tubular junction with crack, loaded by internal pressure and bending 

moment.  

In this case, Y1=p andY2=Mb. For the ideal - plastic behavior of the material 

(k1=k2=1 and α1=α2=2 in relations (18) and (19)), the interaction of the pressure and 

the bending moment is given by, 
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where 1δδ
2
 Yb because the calculation it is made for the fibre on which bending 

moment produces stretching. 

 

The tubular junction may have the crack at the base of the weld (Fig. 3, a), on the 

flank (4) or on the crotch (5). It is considered the tubular junction analyzed in the 

papers [23; 26], characterized by 2Rm/T=20; rm/Rm=0.5; s=S. The crack was 

considered penetrated (a=S), and the material - ideal plastic. Accordingly α1=α2=1 

and σcr =σy – yield stress. 
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Fig. 3. a - tubular junction: 1 – run pipe; 2 – branch pipe; 3 – weld; 4 – crack on the flank; 5 – crack 

on the crotch; 

b – the interaction between the reported pressure (p/pcr) and the reported bending moment 

  
cribib MM ,, , for the penetrated crack (a=S) on the flank, with opening    49β2  (●); 140β2  

(Δ) [26]. The curves were drawn with rel. (23) for 1δ b . c – the interaction between the reported  

loads  β;app cr  and    
cribib aMM β;,,  drawn with relation  (24) [21]. 

 

• Crack at the base of the welding on the flank, with opening 2β (Fig. 3,a). 

Loading by internal pressure (p) and bending moment (Mb,i) in the plane of the 

geometrical axes of the junction elements, 
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where the critical loads Ycr pp   and    
Yibcrib MM ,,   correspond to reaching the 

yield stress. 

 

The curves in Figure 3, b describe the interaction of the relation (23), where the 

denominator is the critical stress for the non-cracked material, and   β;aD  depends 

on the crack opening  2β. 

It is noted that: for  49β2 ,   957.0β;1  aD , and for 140β2 , 

  80.0β;1  aD . 

With relation (24), the graphical representation is a quarter of a circle with the 

radius 1.0 (Fig 3, c). The critical local stresses from the denominators (24) are 

calculated with the relations: 
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• The crack at the base of the welding, on the crotch, with opening 2φ (Fig. 3,a).  

In this case by loading by internal pressure (p) and bending moment (Mb,o), in 

relations (23) and (24), Mb,i and  β;aD  are replaced with Mb,o and 

respectively  ;aD . 

 

5. Discussions 

 

From the analysis of relationships established in this paper it follows that the 

interaction of the reported stresses can be represented in two ways: 

- according to critical stresses of the structure without cracks (pcr; Mb,cr; Fcr...;Ycr), 

the case of relations (18), (21) and (23), in which the deterioration caused by cracks 

is inserted into the right-hand member of the equation; one curve is obtained for each 

combination (a; c) or (a; β) or (a; φ); 

- according to critical stresses of the structure with cracks (pcr(a;c); Mb,cr(a;c); 

Fcr(a;c)...;Ycr(a;c)), as in the relations (19), (22) and (24), in which case the right-

hand member equals 1.0, basically a single curve is obtained. 

The relation (19) and the diagram in figure 4 drawn on it has a general character, 

and can be applied not just to no-cracked structures (  0 ca and   crcr YcaY ,1,1 ;   

and   crcr YcaY ,2,2 ;  ), but also to cracked structures 

On the unique diagram of Fig. 4, also has been highlighted the case 1δ
2

Y . 
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Fig. 4. Unique diagram according to relation (19) 

 
If the structure contains residual stresses, the right-hand member in relation (19) 

is replaced by  resresP δ1  , 
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For 1δ res  the interaction curve corresponds to higher values and for 1δ res , 

the curve corresponds to lower values than for 0δ res  (Fig. 5). The curves in Figure 5 

contain both the influence of the crack (a; c) and the influence of the residual stresses. 
 

 

Fig. 5. Interdependence between reported stresses  caYY cr ;,11  and  caYY cr ;,22  in the case of non-

linear behavior of the mechanical structure with α1=α2=1, considering the influence of residual stress, 

according to the relation (26). 
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If the influence of residual stress is introduced along with total damage, DT, the 

expression of critical local stress becomes, 

     .δ1; 1α

1

 resresTcrresTcr PDYPDY  (27) 

With this expression the relations (26) becomes 
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Y
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The graphical representation of this relationship is a curve that intersects 

coordinate axes at the coordinates equal 1.0; it is obtained a representation as in 

Figure 4 where the coordinates are  resTcr PDYY ;,11  and  resTcr PDYY ;,22 . 

 

6. Conclusions 

 

Based on the principle of critical energy, for materials with non-linear behavior, 

power low, were deducted relations for the local critical state, as a result of the 

superposition of multiple loads. The influence of crack deterioration and residual 

stresses was considered. 

It has been concluded that loads superposition  that brings the structure into a 

critical state can lead to two kinds of expression, namely: 

- by considering the deterioration in the right-hand member of relation for the 

critical state ((9); (11); (18); (21); (23)), in which case the graphical representation in 

the first dial is a quarter of the "circle" with the radius    1α

1

;1  caD ; 

- by considering the deterioration included in the value of the local critical stress 

(rel. (19); (22) şi (24)), in which case the graphical representation is a quarter of a 

circle with a radius equal to 1.0; 

radius equal to 1.0 

- by considering the deterioration and the residual stress in the right-hand member 

(rel. (7) şi (8)) or with the deterioration included in the expression of the local critical 

load and with the effect of the residual stress provided in the right-hand member like 

in relation (26) in which case the curves are plotted as in Fig. 5; 

- by considering both of deterioration and of residual stress in the expression of 

the local critical load like in relation (27), in which case the relationship (28) is used, 

and the graphical representation is a unique curve. 

The relationships established take into account the sense of the action of each 

stress or load (in favor of or against the deformation process). 
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