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The constraint functions of the elements of mechanisms
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Abstract: In the present paper we purpose a discussion concerning the constraints which
may appear at one arbitrary element of a mechanism. We also determine the corresponding
constraint functions. The obtained results may be applied in practical situations. An
application highlights the theory.
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1. Introduction

It is well known that in the multibody approach for the rigid solid dynamics, the
equation of motion may be written as

[l R 0

the notations having the significance given in [1].
In this way, the problem reduces to the determination of the matrix of
constraints [B] for an arbitrary rigid body.

In the particular case of the mechanisms, the constraints may appear either from
the connections with the external system or from the connections between the
elements of the mechanism.

A classical approach of the analysis and synthesis of the mechanisms is
presented in [2]. Some applications for simple mechanisms may be found in [3, 4,
5,6,7,8,9, 10, 11].
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Further on, we will analyze different types of constraints that may appear at
mechanisms determining, for each case, the function or functions of constraints.

2. Notations

We will use the following notations:

— OXYZ - the fixed reference system;

- O;xYy;z; — mobile reference system rigidly linked to the element i of the
mechanism;

- v;, 6;, ¢; — Bryan’s rotational angles of the system O,x;y;z; with respect to
the fixed reference system OXYZ;

— [w;], [6,], [o;] - the square matrices given by

1 0 0 cos6; 0 sing,
[wi]=|0 cosy; —siny; |, [0]=] 0 1 0 |
0 siny; cosy; —sin6; 0 cos6;
cosg; —sing; 0 @)
[o:]=|sing; cose 0;
0 0 1
— [A;] - the rotational matrix of the element i
[A]=lwi]o]o ]: 3)

- X;, Y;, Z; — the coordinates of the point O; with respect to the fixed

reference system;
- P;, Q; — points of one element of the mechanism; this points will be defined

in each case;
- {Roi } — the column matrix

{Roi}: [Xi Y; Zi]T; (4)
- xg), yg), zg) — the coordinates of a point P belonging to the element i with
respect to the mobile reference system O,X;V;z;;
— (0} — the column matrix
Wi=be v 2T ®)
- XQ), Yé‘), ZQ) — the coordinates of the point P of the element i with respect
to the fixed reference system O,XYZ ;
- {R(Pi)} — the column matrix
R =[x v 20T ©)
— f, g —the equations of the surface or curve;
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- [Ki] — the rotational matrix in the planar case

e {COS M ‘p‘} - ™

sin @; COoS ¢;

3. The case of a point constrained to move on a fixed surface

Let be
f(X,Y,Z2)=0 (8)
the equation of the fixed surface (Z) relative to the fixed reference system (Fig. 1).

X
Fig. 1. A point constrained to move on a fixed surface.

The coordinates of the point P that belongs to the element i, constrained to
move on the surface (X) may be written as

ROS= R, J+ AT} = | Y& |; ©

it results the constraint function
(X P, v, z0) = £(x,vY, z0) = 0. (10)
In conclusion, the system looses one degree of freedom.

4. The case of a point constrained to move on a fixed curve
4.1. The general case

Proceeding as in the paragraph 3, one obtains the constraint functions
L(XE Y9, 20) = 1 (xP. v z) = o, (1
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£ (00,0, 280) = o (X1 v89, 280) = o,
where
f(X,Y,2)=0, g(X,Y,Z)=0 (12)
are the equations of the curve in the fixed reference system.
We have now two functions of constraints and, consequently, the system looses
two degrees of freedom.

4.2. The planar case

The situation is presented in Fig. 2.

0 X

Fig. 2. A point constrained to move on a fixed curve.

Let be
f(X,Y)=0 (13)
the equation of the curve (I") in the fixed reference frame.
We may write
XV [Xo A xW [Xoi ] [cosg; —sing, | x y
YP(i) B YOi T yl(Di) B YOi +|:Sin P COSQ; :| yl(Di) , (9
wherefrom

X = Xo, +xt cos g — yWsin g, Y =Y, + xUsing; + yW cos gy (15)
it results the constraint function
LX) = 1 (xE. v
= f(XOi + XQ) COS ¢; — yg)sin ¢, Yo, + xg)sin 0 + yg)cos (pi)z 0. (16)

The system looses one degree of freedom.
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5. The case of the spherical joint

The common point P of the spherical joint has the coordinates XQ), yg), zg)

relative to the mobile reference system O,X;y;z;, and the coordinates XS*”, yls),

ZS*” relative to the mobile reference system O, x;.,V;.1Z;,; (Fig. 3).

It results
RO} =R, f+ [A T}, (17)
REV} = Ro, |+ (AL (18)
and from the equality
RO} = RE) (19)

one obtains three functions of constraints, that is, the system consisting in the
elements i and i +1 looses three degrees of freedom.

i+1
Y
z
X )
Fig. 3. The spherical joint.
Q Q R b i+1

Fig. 4. The cylindrical joint.
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6. The cylindrical joint

Let be P, and P, two points situated on the axis of the cylindrical joint and
which are rigidly linked to the element i, and let be Q, and Q, two other points

situated on the same axis and rigidly linked to the element i + 1 (Fig. 4). The four
points can be real or virtual.
At an arbitrary moment of time, one may write the relations

ROL= Ro, |+ [A S0, (20)
RO} =R, + AT}, (21)
R '”} Ro, |+ (A} (22)
R = R, 1+ [.+1]{ el (23)

From the previous relations one deduces the coordinates XSl), YFﬁl‘), Z,(Jl), XSZ),
YO, z8 X§ v z8 and X§H v, Z 5 of the points B, Py, Q.

Py n =R PQ T Q2
and Q,, respectively, relative to the fixed reference system. The points P, and P,
define a straight line, the equations of which with respect to the fixed reference system
read
f(X,Y,2)=0, g(X,Y,Z)=0. (24)
The constraint functions require the appurtenance of the points Q, and Q, to
this straight line. One obtains four functions of constraints
f(x((?.:l),Y(.u) (.+1)) 0, g( (i+1) Y(gu)’zglu)) ~0,

Q (25)
F(x G, v, zE9) = 0, g(x (gz Dy, z4M) = 0,

the number of the degrees of freedom of the system diminishing by four.
7. The planar revolute joint

One obtains the relations (Fig. 5)

i+1

Fig. 5. The planar revolute joint.
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_ (i) Xo | 1— 1 xW® Xo cos ¢, —sin o, || x0)
ROy =| 0 =0 | ] = |0 [+ e S e gy
Y9 | Y, yo | Yo sing; cosg; | y¥
{R(Fi,+1)} _ {Xgu)} _ {XOM} . [KH{XSH)}
W " Yo, yi?
. . (27)
_ | Ko 4 COS @iy —SIN@; XSH)
- Y0i+1 sin Py COS @y ygﬂ)
and from the condition
RU} = RE)] (28)
one deduces two functions of constraints
fl(in Yo, @ir Xoy 10 Yor.0 (Pi+l) = Xo, + xf cos ¢; - YS) sin ¢,
. ) 29
- x0i+1 N Xgﬂ) COS @;yy + yl(?’Hl) sin Qi = 0, ( )
fz(xo- Yo, Pis Xop 0 Yor, (Pi+1): Yo, + Xg)sin ¢; + VS) COS ¢;
I I 1+ I+ I (30)

—Yo,, — Xg+1) sing,; — Yo cos gy, = 0.
In this situation, the system looses two degrees of freedom.
8. The prismatic joint

8.1. The general case

We choose the points B, P,, Q, and Q, as in the case of the cylindrical joint

(paragraph 6). Similarly, one gets the functions of constraints (25) (Fig. 6).

Fig. 6. The spatial prismatic joint
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In addition, we choose the points P;, P, and P, belonging to the element i,
situated on a face of the prism, and the point Q,, belonging to the element i + 1
and situated in the plane defined by the points P,, P, and B, . One may write

{R(Fi’s)A,s } = {Roi }+ [Ai ]{réia?ms }’ (31)
R = R+ (ALY, (32)

The condition which we are looking for requires the appurtenance of the point
Q, to the plane defined by the points P,, P, and R, , that s,

L Xy vy zy)

1 X viozy . )
i) )26 | T Y

L X Y o

1 XQ3 YQ3 ZQ3

We have five functions of constraints and, consequently, the system looses five
degrees of freedom.

8.2. The planar case

The problem is more difficult in this case (Fig. 7).

Fig. 7. The planar prismatic joint

The condition which states that the elements i and i + 1 do not rotate one about
other (in plane) leads to the function of constraints

fi =@ — @ =ct. (34)

The rotation about the axis of the joint can be vanished directly by an obvious

function of constraints. It results from the conditions which state that the points O,

and O,,, (if these points do not belong to the rotational axis, otherwise one has to
choose other two points) belong to the fixed plane OXY .
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9. Example

Zl

Fig. 8. Example

Let us consider two bars AC and CB of lengths |, and I,, masses m and m,,
respectively, linked one to another by a spherical joint at the point C . The mobile
reference frames O,xy,z,, O,X,Y,z, are principal central systems of inertia for
which one knows the values NN P S J J. . For the fixed reference

1 T TXp !t Ty TIp
system O,XYZ the axis O,Z is vertical ascendant. Obviously, knowing all these
parameters, one may continue the example in order to obtain the matrix equation of
motion [12].

Choosing the Bryan angles as rotational parameters for each bar, we have

1 0 0 [ cos®, 0 sin®,
[wi]=]0 cosy; —siny; |, [0]=| 0 1 0 |
0 siny; cosy; | —sin®; 0 cos6, )
cos, —sing; O] ®
sm(p, COS(p, 0l,i=12,
1_
A ]=
CO;Co; - COiS(pi SO, i-12. (i)

= | SW;SO;Co; + CyiSQ; — Sy;S0;SQ; + CyiC; — Sych; |,
CyiSOCo; +Sy;Sp;  CyiSO;SQ; + Syice;  Cyich;
We will the consider the following order of the parameters X, , Yo, , Zo , Yy,

0, ¢, onlYozv Zoz, Vo, 05, 9.
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We have only one constraint given by the appurtenance of the point C to the
two bars.

For the bar AC one may write X. = L

X Yo =0, z. =0, while for the bar
BC one has X, =—|52, Ye =0, 2. =0.
From the relations
ly
Xc Xo, 2
Yo |=| Yo, |+[A] O], (iii)
Ze Zo, 0
I2
Xc Xo, 2
Yo |=| Yo, [+[A] O (iv)
Zc Zo, 0
one gets the expressions
l,
Xo, + 20056 L COS @ = Xo, —Ezcose2 oS @, ,
l, /. ) .
Yo, + El(sm Wy, SiN O, oS @, + COS y,; Sin @, ) =
I . )
=Y, Ez(sm Wy, Sin 6, CoS ¢, + COS , Sin ¢,) (v)
Zo, + %1( CoS y, Sin 6, oS @, + Sin y, sin @, ) =
1,
=272, - %

— (~ cosy, sin B, cos @, + sin y, sin @,)

so that the functions of constraints read

fl(xol,...,(pz)z Xo, = Xo, + IElcos 0, cos @, + Ezcos 0,cosp, =0,

fz(xol,..., (pz) = Yo, — Yo, E(sin W, sin B, cos @, + €os y, sin ¢;)

(vi)

2

E(sm Y, Sin B, Cos @, + oSy, Sin @,) = 0,
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I . . .
f3(Xol,..., (pz) =Zo, —Zo, + El(_ COS , Sin 6, €os @, + sin y, sin ¢, )
+ IEZ(— CoS , Sin O, COS @, + COS y, sin @, ) = 0,

wherefrom one obtains the components of the matrix of constraints as follows

B, = A =1,B, = X =0, By = o =01814=ﬁ=0’
Xo, No, o oy,
B = M —I—lsin 6, cos¢,, B = M _ —I—lcose1 sin g, ,
06, 2 op, (vii)
vii
B, = X =-1,Bg = X =0, By = o :OaBuo:_&fl =0,
Xo, Yo, 0z, v,
of . of I .
B,,, = — =—--2sin0,cos¢,, B,, = —+ =—-2¢0s0, sin
111 26, 5 2 P2y B 50, 5 2 P2
B, = *, :O’Bzzz_af2 =1, stz_afz =0,
Xo, o, 0Zo,
B,, = ﬁ = IEl(cos v, 8in 0, —siny, sing,),
1
of I, .
B, = —% = -Lsiny, cos O, cos ¢, ,
25 00, 2 41 1 (21
of | . . . of
B, = —2 = -X(=sinwy, sin O, sin @, + coswy, cos ¢, ), B,, = —2- =0,
26 o, 2 ( V1 151N Q@ Y1 (Pl) 27 Xo,
of, of, (viii)
By = =-1, By = =U,
No, 0L,
By, = ;fvz = IEz(cos v, sin 0, cos @, — sin y, sin g,),
2
o, 1, .
= —= =-=siny, cos 0, cos o, ,
211 26, 5 V2 2 ?;
o, L, .
By, = Fr E(_ sin, sin 0, sin @, + COS 7, COS @, ),
2
Bs = % =0,B; = e =0, By i:l,
Xo, o, oz, _
o, | (1)
B, = —> = = (sin y, sin 6, cos @, + €Sy, Sin @, ),
oy, 2
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of I
By, = —2 = —-2cosy, cos 0, Cos ¢,
0, 2
By = — = I—1(cos Wy, sin 0, sin @, + siny, cos @, ), By, = Ay _ 0
op, 2 Xo,
838 _ 8f3 — 0' ng :ﬂ:—l,
No, 0Zo,
of, L. _
Bay = ™ = E(sm v, sin 0, Cos @, + COS y, Sin @, ),
2
of I
By = ﬁ = _EZCOSWz cos 6, cos ¢, ,
2
o, |, o .
By, = Er E(cos v, Sin 0, sin @, + siny, cos @, ).
2

Let us consider now that at the point C we have a cylindrical joint.
In this situation we have to add two new functions of constraints
f4(xol’---’(P2)= Y, —y; =0, fs(xol’---i(Pz)z 0, -6, =0, )
the matrix of constraints having now 5 rows and 12 columns.

The first three rows were calculated previously; the next two rows have the
expressions

B,=0,B,=0,B,=0,B,=-1,B;=0,B,=0, B, =0,

(xi)

By =0, Bao =0, Byo =1, By =0, By, =0,
By =0, By, =0, B3 =0, By =0, Bs =-1, By =0, B;; =0, (xii)
X1

Bsg =0, Byg =0, Bsyo = 0, Bgyy =1, By, = 0.

Let us impose now the supplementary conditions which state that the points A,
and B are situated on the spheres of equations

0,(X,Y,Z)=X2+Y24+22_R?2 =0, (xiii)
and
9,(X,Y,Z)= (X =2Rf +Y2+ 2?2 —R? = 0, (xiv)
respectively.
The points A and B have the coordinates X, :—Izl, ya=0,2z,=0,
Xg =|52, Yg =0, z; = 0; itresults
Il
Xa Xo, )
Yo |=| Yo, [+[A] O |, (xv)
Z, Zo, 0
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1,
Xg Xo, 2
Yo |=|Yo, |+[A] O, (xvi)
Zs Zo, 0

that is,
Xa = Xo, —IElCOSGlCOS(pl,

I . . . ..
Yu = Yo, — = (siny, sin 0, cos ¢y + cos y, sin¢,), (xvii)

=N

Zy =2, —51(— COS \y, Sin O, €Os @; + sin y, sin ¢, ),
I
Xg = Xo, +Ezcose2 cos ¢, ,

Ys = Yo +|2

, E(sin v, sin 0, cos @, + COSy, sin @, ), (xviii)

I . . .
Zy =Zo, + EZ(_ CoS \, sin 0, CoS @, + sin y, sin @, ).

One gets the functions of constraints

2
I
f4(XOl,...,(p2): (Xol —Elcos 0, cosml) +
L, _\F .
+| Yo, —E(sm Wy, SiN 6, cos @, + cosy, sing, )| + (xix)

2
+ [Zol —IEl(— €OS , Sin 6, Cos @, + sin y, sin (pl)} ~-R2=0,

2
I
fS(Xol,..., (pz) = (on - 2R + Ezcos 0, cos (pZJ +
l, , . . . ?
+| Yo, + E(sm Wy, Sin 0, CoS @, + COSy, SiN g, )| + (Xx)

2
+ {ZOZ +IEZ(— COS y,, Sin 0, COS @, + Sin , sin (pz):| ~-R2=0.

The matrix of constraints has now 5 rows and 12 columns.
Let us impose the condition which states that the points A and B are situated
in the plane Z = 0, while at the point C we have a cylindrical joint.
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We may successively write (the conditions for the appurtenance of the points A
and B to the plane Z = 0; the rest of the functions of constraints were previously
determined):

l;
Xa Xo, )
Yo=Y |+[A] 0 |, (xxi)
0| |2z 0
1 . o )
Zo, _E(_ COS y, sin 6, cos @, + siny, sing,) = 0. (Xxii)
l,
Xg Xo, 2
Yo |=|Yo, [+[A] O, (xxiii)
0| |2z, 0
Z,, + IEZ(— CoS \, sin 0, Cos @, + siny, sin@,) = 0. (XXiv)

The matrix of constraints has now 7 rows and 12 columns.
10. Conclusions

This paper presents a multibody approach for the determination of the functions
of constraints and, consequently, the matrix of constraints in the case of a general
mechanism. The functions of constraints are determined in each particular case. An
example shows the application of the theory.
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