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Abstract: In the present paper we purpose a discussion concerning the constraints which 
may appear at one arbitrary element of a mechanism. We also determine the corresponding 
constraint functions. The obtained results may be applied in practical situations. An 
application highlights the theory. 
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1. Introduction 
 

It is well known that in the multibody approach for the rigid solid dynamics, the 
equation of motion may be written as 

qBC
Fq

0B
BM T

, (1)

the notations having the significance given in [1]. 
In this way, the problem reduces to the determination of the matrix of 

constraints B  for an arbitrary rigid body. 
In the particular case of the mechanisms, the constraints may appear either from 

the connections with the external system or from the connections between the 
elements of the mechanism. 

A classical approach of the analysis and synthesis of the mechanisms is 
presented in [2]. Some applications for simple mechanisms may be found in [3, 4, 
5, 6, 7, 8, 9, 10, 11]. 
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Further on, we will analyze different types of constraints that may appear at 
mechanisms determining, for each case, the function or functions of constraints. 
 
2. Notations 
 

We will use the following notations: 
– OXYZ  – the fixed reference system; 
– iiii zyxO  – mobile reference system rigidly linked to the element i  of the 

mechanism; 
– i , i , i  – Bryan’s rotational angles of the system iiii zyxO  with respect to 

the fixed reference system OXYZ ; 
– i , i , i  – the square matrices given by 

ii

iii

cossin0
sincos0

001
, 

ii

ii

i

cos0sin
010

sin0cos
, 

100
0cossin
0sincos

ii

ii

i ; 

(2)

– iA  – the rotational matrix of the element i  

iiiiA ; (3)
– iX , iY , iZ  – the coordinates of the point iO  with respect to the fixed 

reference system; 
– jP , jQ  – points of one element of the mechanism; this points will be defined 

in each case; 
– 

iOR  – the column matrix 
T

iiiO ZYX
i

R ; (4)

– i
Px , i

Py , i
Pz  – the coordinates of a point P  belonging to the element i  with 

respect to the mobile reference system iiii zyxO ; 

– i
Pr  – the column matrix 

Ti
P

i
P

i
P

i
P zyxr ; (5)

– i
PX , i

PY , i
PZ  – the coordinates of the point P  of the element i  with respect 

to the fixed reference system XYZO0 ; 

– i
PR  – the column matrix 

Ti
P

i
P

i
P

i
P ZYXR ; (6)

– f , g  – the equations of the surface or curve; 
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– iA  – the rotational matrix in the planar case 

ii

ii
i cossin

sincos
A . (7)

 
3. The case of a point constrained to move on a fixed surface 
 

Let be 
0,, ZYXf  (8)

the equation of the fixed surface  relative to the fixed reference system (Fig. 1). 

P

i

O

Oixi

zi

yi

X

Y

Z

( )

 
Fig. 1. A point constrained to move on a fixed surface. 

 
The coordinates of the point P  that belongs to the element i , constrained to 

move on the surface  may be written as 

i
P

i
P

i
P

i
PO

i
P

Z
Y
X

i
rARR ; (9)

it results the constraint function 
0,,,,1

i
P

i
P

i
P

i
P

i
P

i
P ZYXfZYXf . (10)

In conclusion, the system looses one degree of freedom. 
 
4. The case of a point constrained to move on a fixed curve 
 
4.1. The general case 
 

Proceeding as in the paragraph 3, one obtains the constraint functions 
0,,,,1

i
P

i
P

i
P

i
P

i
P

i
P ZYXfZYXf , (11)
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0,,,,2
i

P
i

P
i

P
i

P
i

P
i

P ZYXgZYXf , 
where 

0,, ZYXf , 0,, ZYXg  (12)
are the equations of the curve in the fixed reference system. 

We have now two functions of constraints and, consequently, the system looses 
two degrees of freedom. 
 
4.2. The planar case 
 

The situation is presented in Fig. 2. 
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Fig. 2. A point constrained to move on a fixed curve. 
 

Let be 
0, YXf  (13)

the equation of the curve  in the fixed reference frame. 
We may write 

i
P

i
P

ii

ii

O

iO
i

P

i
P

i
O

iO
i

P

i
P

y
x

Y
X

y
x

Y
X

Y
X

ii cossin
sincos

A , (14)

wherefrom 

i
i

Pi
i

PO
i

P yxXX
i

sincos , i
i

Pi
i

PO
i

P yxYY
i

cossin ; (15)
it results the constraint function 

. 0cossin,sincos

,,1

i
i

Pi
i

POi
i

Pi
i

PO

i
P

i
P

i
P

i
P

yxYyxXf

YXfYXf

ii

 (16)

The system looses one degree of freedom. 
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5. The case of the spherical joint 
 

The common point P  of the spherical joint has the coordinates i
Px , i

Py , i
Pz  

relative to the mobile reference system iiii zyxO , and the coordinates 1i
Px , 1i

Py , 
1i

Pz  relative to the mobile reference system 1111 iiii zyxO  (Fig. 3). 
It results 

i
PiO

i
P i

rARR , (17)
1

1
1

1
i

PiO
i

P i
rARR  (18)

and from the equality 
1i

P
i

P RR  (19)
one obtains three functions of constraints, that is, the system consisting in the 
elements i  and 1i  looses three degrees of freedom. 
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Fig. 3. The spherical joint. 
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Fig. 4. The cylindrical joint. 



 
 
 
 
 

40 St nescu Nicolae-Doru/ The constraint functions of the elements of mechanisms 

 

6. The cylindrical joint 
 

Let be 1P  and 2P  two points situated on the axis of the cylindrical joint and 
which are rigidly linked to the element i , and let be 1Q  and 2Q  two other points 
situated on the same axis and rigidly linked to the element 1i  (Fig. 4). The four 
points can be real or virtual. 

At an arbitrary moment of time, one may write the relations 
i

PiO
i

P i 11
rARR , (20)

i
PiO

i
P i 22

rARR , (21)
1

1
1

111
i

QiO
i

Q i
rARR , (22)

1
1

1
212
i

QiO
i

Q i
rARR . (23)

From the previous relations one deduces the coordinates i
PX
1

, i
PY
1

, i
PZ
1

, i
PX

2
, 

i
PY

2
, i

PZ
2

, 1
1
i

QX , 1
1
i

QY , 1
1
i

QZ , and 1
2

i
QX , 1

2
i

QY , 1
2

i
QZ  of the points 1P , 2P , 1Q , 

and 2Q , respectively, relative to the fixed reference system. The points 1P  and 2P  
define a straight line, the equations of which with respect to the fixed reference system 
read 

0,, ZYXf , 0,, ZYXg . (24)
The constraint functions require the appurtenance of the points 1Q  and 2Q  to 

this straight line. One obtains four functions of constraints 
0,, 111

111
i

Q
i

Q
i

Q ZYXf , 0,, 111
111
i

Q
i

Q
i

Q ZYXg , 

0,, 111
222
i

Q
i

Q
i

Q ZYXf , 0,, 111
222
i

Q
i

Q
i

Q ZYXg , 
(25)

the number of the degrees of freedom of the system diminishing by four. 
 
7. The planar revolute joint 
 

One obtains the relations (Fig. 5) 

i+1
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Fig. 5. The planar revolute joint. 



 
 
 
 
 
 Journal of Engineering Sciences and Innovation, Vol. 2, Issue 1 / 2017 41 

 

i
P

i
P

ii

ii

O

O
i

P

i
P

i
O

O
i

P

i
Pi

P y
x

Y
X

y
x

Y
X

Y
X

i

i

i

i

cossin
sincos

AR , (26)

1

1

11

11

1

1

11

1
1

cossin
sincos

1

1

1

1

i
P

i
P

ii

ii

O

O

i
P

i
P

i
O

O
i

P

i
Pi

P

y
x

Y
X

y
x

Y
X

Y
X

i

i

i

i AR

 (27)

and from the condition 
1i

P
i

P RR  (28)

one deduces two functions of constraints 

, 0sincos

sincos,,,,,

1
1

1
1

11

1

11

i
i

Pi
i

PO

i
i

pi
i

POiOOiOO

yxX

yxXYXYXf

i

iiiii  (29)

. 0cossin

cossin,,,,,

1
1

1
1

12

1

11

i
i

Pi
i

PO

i
i

pi
i

POiOOiOO

yxY

yxYYXYXf

i

iiiii  (30)

In this situation, the system looses two degrees of freedom. 
 
8. The prismatic joint 
 
8.1. The general case 
 

We choose the points 1P , 2P , 1Q  and 2Q  as in the case of the cylindrical joint 
(paragraph 6). Similarly, one gets the functions of constraints (25) (Fig. 6). 
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Fig. 6. The spatial prismatic joint 
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In addition, we choose the points 3P , 4P  and 5P  belonging to the element i , 
situated on a face of the prism, and the point 3Q , belonging to the element 1i  
and situated in the plane defined by the points 3P , 4P  and 5P  . One may write 

i
PiO

i
P i 5,4,35,4,3

rARR , (31)
1

1
1

313
i

QiO
i

Q i
rARR . (32)

The condition which we are looking for requires the appurtenance of the point 
3Q  to the plane defined by the points 3P , 4P  and 5P , that is, 

0

1
1
1
1

111
333

555

444

333

i
Q

i
Q

i
Q

i
P

i
P

i
P

i
P

i
P

i
P

i
P

i
P

i
P

ZYX
ZYX
ZYX
ZYX

. (33)

We have five functions of constraints and, consequently, the system looses five 
degrees of freedom. 
 
8.2. The planar case 
 

The problem is more difficult in this case (Fig. 7). 

O
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i
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i+1
i
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Fig. 7. The planar prismatic joint 
 

The condition which states that the elements i  and 1i  do not rotate one about 
other (in plane) leads to the function of constraints 

ct11 iif . (34)
The rotation about the axis of the joint can be vanished directly by an obvious 

function of constraints. It results from the conditions which state that the points iO  
and 1iO  (if these points do not belong to the rotational axis, otherwise one has to 
choose other two points) belong to the fixed plane OXY . 
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9. Example 
 

O2O1

gg

1
1

1 2
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2 21

x

x
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m
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Cz

Y

Z

X
0O

 
Fig. 8. Example 

 
Let us consider two bars AC  and CB  of lengths 1l  and 2l , masses 1m and 2m , 

respectively, linked one to another by a spherical joint at the point C . The mobile 
reference frames 1111 zyxO , 2222 zyxO  are principal central systems of inertia for 
which one knows the values 

1xJ , 
1yJ , 

1zJ , 
2xJ , 

2yJ , 
2zJ . For the fixed reference 

system XYZO0  the axis ZO0  is vertical ascendant. Obviously, knowing all these 
parameters, one may continue the example in order to obtain the matrix equation of 
motion [12]. 

Choosing the Bryan angles as rotational parameters for each bar, we have 

ii

iii

cossin0
sincos0

001
, 

ii

ii

i

cos0sin
010

sin0cos
, 

100
0cossin
0sincos

ii

ii

i , 2 ,1i , 

(i)

, 
cccssscsscsc
csccssssccss

ssccc

iiiiiiiiiiii

iiiiiiiiiiii

iiiii

iiiiA

 2 ,1i , (ii)

We will the consider the following order of the parameters 
1OX , 

1OY , 
1OZ , 1 , 

1 , 1 , 
2OX , 

2OY , 
2OZ , 2 , 2 , 2 . 
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We have only one constraint given by the appurtenance of the point C  to the 
two bars. 

For the bar AC  one may write 
2
1lxC , 0Cy , 0Cz , while for the bar 

BC  one has 
2
2lxC , 0Cy , 0Cz . 

From the relations 

0
0
2
1

1

1

1

l

Z
Y
X

Z
Y
X

O

O

O

C

C

C

A , (iii)

0
0
2
2

2

2

2

l

Z
Y
X

Z
Y
X

O

O

O

C

C

C

A  (iv)

one gets the expressions 

22
2

11
1 coscos

2
coscos

2 21

lXlX OO , 

, sincoscossinsin
2

sincoscossinsin
2

22222
2

11111
1

2

1

lY

lY

O

O
 

, sinsincossincos
2

sinsincossincos
2

22222
2

11111
1

2

1

lZ

lZ

O

O
 

(v)

so that the functions of constraints read 

0coscos
2

coscos
2

 ..., , 22
2

11
1

21 211

llXXXf OOO , 

, 0sincoscossinsin
2

sincoscossinsin
2

 ..., ,

22222
2

11111
1

22 211

l

lYYXf OOO
 

(vi)
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, 0sincoscossincos
2

sinsincossincos
2

 ..., ,

22222
2

11111
1

23 211

l

lZZXf OOO
 

wherefrom one obtains the components of the matrix of constraints as follows 

1
1

1
11

OX
fB , 0

1

1
12

OY
fB , 0

1

1
13

OZ
fB , 0

1

1
14

fB , 

11
1

1

1
15 cossin

2
lfB , 11

1

1

1
16 sincos

2
lfB , 

1
2

1
17

OX
fB , 0

2

1
18

OY
fB , 0

2

1
19

OZ
fB , 0

2

1
110

fB , 

22
2

2

1
111 cossin

2
lfB , 22

2

2

1
112 sincos

2
lfB  

(vii)

0
1

2
21

OX
fB , 1

1

2
22

OY
fB , 0

1

2
23

OZ
fB , 

1111
1

1

2
24 sinsinsincos

2
lfB , 

111
1

1

2
25 coscossin

2
lfB , 

11111
1

1

2
26 coscossinsinsin

2
lfB , 0

2

2
27

OX
fB , 

1
2

2
28

OY
fB , 0

2

2
29

OZ
fB , 

22222
2

2

2
210 sinsincossincos

2
lfB , 

222
2

2

2
211 coscossin

2
lfB , 

22222
2

2

2
212 coscossinsinsin

2
lfB , 

(viii)

0
1

3
31

OX
fB , 0

1

3
32

OY
fB , 1

1

3
33

OZ
fB , 

11111
1

1

3
34 sincoscossinsin

2
lfB , 

(ix)
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111
1

1

2
35 coscoscos

2
lfB , 

11111
1

1

3
36 cossinsinsincos

2
lfB , 0

2

3
37

OX
fB , 

0
2

3
38

OY
fB , 1

2

3
39

OZ
fB , 

22222
2

2

3
310 sincoscossinsin

2
lfB , 

222
2

2

3
311 coscoscos

2
lfB , 

22222
2

2

3
312 cossinsinsincos

2
lfB . 

Let us consider now that at the point C  we have a cylindrical joint. 
In this situation we have to add two new functions of constraints 

0 ..., , 1224 1OXf , 0 ..., , 1225 1OXf , (x)
the matrix of constraints having now 5 rows and 12 columns. 

The first three rows were calculated previously; the next two rows have the 
expressions 

041B , 042B , 043B , 144B , 045B , 046B , 047B , 
048B , 049B , 1410B , 0411B , 0412B , 

(xi)

051B , 052B , 053B , 054B , 155B , 056B , 057B , 
058B , 059B , 0510B , 1511B , 0512B . 

(xii)

Let us impose now the supplementary conditions which state that the points A , 
and B  are situated on the spheres of equations 

0 , , 2222
1 RZYXZYXg , (xiii)

and 
02 , , 2222

2 RZYRXZYXg , (xiv)
respectively. 

The points A  and B  have the coordinates 
2
1lxA , 0Ay , 0Az , 

2
2lxB , 0By , 0Bz ; it results 

0
0
2
1

1

1

1

1

l

Z
Y
X

Z
Y
X

O

O

O

A

A

A

A , (xv)
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0
0
2
2

2

2

2

2

l

Z
Y
X

Z
Y
X

O

O

O

B

B

B

A , (xvi)

that is, 

11
1 coscos
21

lXX OA , 

11111
1 sincoscossinsin
21

lYY OA , 

11111
1 sinsincossincos
21

lZZ OA , 

(xvii)

22
2 coscos
22

lXX OB , 

22222
2 sincoscossinsin
22

lYY OB , 

22222
2 sinsincossincos
22

lZZ OB . 

(xviii)

One gets the functions of constraints 

, 0sinsincossincos
2

sincoscossinsin
2

coscos
2

,...,

2
2

11111
1

2

11111
1

2

11
1

24

1

1

11

RlZ

lY

lXXf

O

O

OO

 (xix)

. 0sinsincossincos
2

sincoscossinsin
2

coscos
2

2,...,

2
2

22222
2

2

22222
2

2

22
2

25

2

2

21

RlZ

lY

lRXXf

O

O

OO

 (xx)

The matrix of constraints has now 5 rows and 12 columns. 
Let us impose the condition which states that the points A  and B  are situated 

in the plane 0Z , while at the point C  we have a cylindrical joint. 
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We may successively write (the conditions for the appurtenance of the points A  
and B  to the plane 0Z ; the rest of the functions of constraints were previously 
determined): 

0
0
2

0

1

1

1

1

1

l

Z
Y
X

Y
X

O

O

O

A

A

A , (xxi)

0sinsincossincos
2 11111
1

1

lZO . (xxii)

0
0
2

0

2

2

2

2

2

l

Z
Y
X

Y
X

O

O

O

B

B

A , (xxiii)

0sinsincossincos
2 22222
2

2

lZO . (xxiv)

The matrix of constraints has now 7 rows and 12 columns. 
 
10. Conclusions 
 

This paper presents a multibody approach for the determination of the functions 
of constraints and, consequently, the matrix of constraints in the case of a general 
mechanism. The functions of constraints are determined in each particular case. An 
example shows the application of the theory. 
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