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Abstract. A sonic composite is a finite size periodic array composed of scatterers 
embedded in a homogeneous material which has the unique property of exhibiting the 
band-gaps, where the sound is not allowed to propagate due to complete reflections. We 
propose in this paper an inverse problem to calculate the band structure of a sonic plate, 
based on evanescent Bloch boundary conditions between the scatterrers and the matrix, and 
the cnoidal superposition of waves. The sonic plate is composed of an array of acoustic 
scatterers embedded into an epoxy matrix. The scatterers are piezoceramic hollow spheres 
made from functionally graded materials with radial polarization, which support the Reddy 
and cosine laws. The proposed method requires the displacements registered at both sides 
of the plate. This allows the band structures to be determined experimentally. The Bloch 
boundary conditions greatly reduces the computational effort because they cancels the 
necessity to introduce non-reflecting boundary condition at the ends of the plate if sharp 
periodic boundary conditions between the scatterers and the matrix are used. 
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1. Introduction 

The band-gaps or Bragg reflections occur at different frequencies inverse 
proportional to the central distance between two scatterers of a sonic composite. A 
sonic composite is a finite size periodic array composed of scatterers embedded in 
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a homogeneous material which has the property of exhibiting the frequency band-
gaps where the sound is not allowed to propagate 1–7].  

Due to their unique properties, sonic composites have great potential in many 
applications, including vibration and sound isolation, acoustic cloaking and 
waveguiding. The evanescent field of waves is distributed across the boundary of 
the waveguide into the surrounding composite by several times the lattice constant, 
just like the evanescent field in the case of total reflection on the dielectric 
boundary [8-12]. 

The existence of a pronounced sound attenuation band connected to a large 
acoustic impedance ratio of the materials representing the matrix and scatterers is 
reported not only by experimental works [13-15], but also by theoretical works 
[16-18]. Liu et al. [19] built a sonic crystal consisting of an array of acoustic 
scatterers, which exhibit resonance frequencies themselves. These local resonators 
are silicone rubber coated metal spheres.  

The sound attenuating frequency bands are not determined by the distribution of 
scatterers, but by their intrinsic structure. Hirsekorn et al. [20] have analyzed the 
sound attenuation of a sonic material consisting of an array of silicone rubber 
coated hollow steel cylinders embedded in an epoxy matrix. The results gain a 
better insight of the mechanisms governing local resonances that can be used to 
predict the structural parameters needed to fabricate custom-tailored sonic 
materials.

The primary goal of this paper is to propose an inverse problem based on 
evanescent Bloch boundary conditions and cnoidal superposition of waves to 
calculate the band structure of a sonic plate when damping is present. The method 
needs the displacements registered at both sides of the plate in a small number of 
points. The damping coefficient is obtained from the ratio of the displacements at 
the receiver and at the input transducer. This allows the band structures to be 
determined experimentally. The scatterers are made from functionally graded 
materials with radial polarization, which support the Reddy and cosine laws [21-
23].  

 
2. The sonic composite 
 

The sonic composite is consisting of an array of acoustic scatterers embedded in 
an epoxy matrix. The acoustic scatterers are hollow spheres made from a nonlinear 
isotropic piezoelectric ceramic, while the matrix is made from a nonlinear isotropic 
epoxy resin (Fig. 1). The sonic plate consists of 72 local resonators of diameter a . 
A rectangular coordinate system 321 xxOx  is employed. The origin of the 

coordinate system 321 xxOx  is located at the left end, in the middle plane of the 

sample, with the axis 1Ox  in-plane and normal to the layers and the axis 3Ox  out-
plane and normal to the plate. The length of the plate is l , its width is d , while the 
diameter of the hollow sphere is a  and its thickness is e a . In order to avoid 
unphysical reflections from the boundaries of the specimen, we have implemented 
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the absorbing boundary conditions in the 1x -direction, at 1 0x  and 1x l . A 
transducer and a receiver are located at 1x b  and 1x l b , respectively. The role 
of the transducer is to inject into the plate the plane monochromatic waves 
propagating in the 1x -direction.  

 

 
Fig. 1. Sketch of the sonic plate. 

 
     The basic equations of 3D spherically isotropic piezoelasticity for a sphere are 
given in [3, 25]. The center of anisotropy is the same with the origin of the 
spherical coordinate system ( , , )r . An index followed by a comma represents 
partial differentiation with respect to space variables, while a superposed dot 
indicates differentiation with respect to time. Throughout the paper, repeated 
indices denote summation over the range (1, 2, 3). The constitutive equations for 
the piezoelectric hollow sphere are given by 

 11 12 13 31rr rr C S C S C S f r .  

 12 11 13 31 ,rr rr C S C S C S f r ,  

 13 13 33 33 ,rr rr rr rr C S C S C S f r , 

 44 15 ,2r r rr C S f , 44 15 ,2 cscr r rr C S f , (1) 

 Ttn , (2) 

 662r C S ,  15 11 ,2 rrD C S ,      

 15 11 ,2 cscrrD f S ,  31 31 33 33 ,r r rr rrD f S f S f S r ,  
where ij  is the stress tensor,  is the electric potential, iD  is the electric 

displacement vector, ijC are the elastic constants, 66 11 12( ) / 2C C C , ijf  are the 

piezoelectric constants ijf , ij  are the dielectric constants, and , ,i r .  The 
elastic, piezoelectric and dielectric constants are arbitrary functions of the radial 
coordinate r . On denoting the components of the strain tensor and displacement 
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vector by ij and iu , , ,i r , respectively, the quantities ijS  related to the strain 

tensor ij are defined as 

 ,rr rr r rS r ru ,   , rS r u u , 

 ,csc cotrS r u u u , , ,2 2r r r rS r u ru u , (2) 

 , ,2 2 cscr r r rS r u ru u ,   , ,2 2 csc cotS r u u u .  
Denoting the density of the material by , which is assumed to be an arbitrary 

function of r , the equations of motion become 

 
2

, , ,csc 2 ( )cotr r rr r u ,  

 
2

, , ,csc 2 2 cotr r rr r u ,  (3) 

 
2

, , ,csc cotrr r r r rr r rr r u .           
The charge equation of electrostatics is given by 

 , , ,csc ( sin ) csc 0r r rr .  (4) 
The Chen functions F , G and w , and stress functions 1  and 2  defined as  

 , ,cscu F G ,  , ,cscu F G ,  ru w , 

 1, 2,cscr ,  1, 2,cscr . 
are used in order to simplify equations (1)-(4). Therefore, these equations can be 
separated into two independent sets of equations   

,rrA MA ,                                                           (5)  

and   

 ,rrB PB ,  , 2[ , , , , , ]T
rr rB G w ,                                            (6) 

where                        

 

2
2 2

66 2

1
44

2 ( 2)

1

C rM t
C

, 

2 2
2 2

2 2cot csc . 

It should be noted that equation (5) is related to two state variables, 
namely 1[ , ]TA F , while equations (6) are related to the following six state 
variables 2[ , , , , , ]T

rr rB G w . 
The nonzero components of the matrix P  are given by 

 11 2 1P , 
2

12P ,  
2

13 1P k , 

2
2

14 1 22P k r
t

, 
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 15 25 642 2P P P , 21P , 22 2P ,  

2
2 2

23 2 66 22P k C r
t

, 

 24 1P k ,  
1

32 44P C ,  33 34 55 1P P P , 
1

36 44 15P C f , 
1

41 33P , 
2

43P , 
44 2P , 

1
45 33P f , 

2 2
52 44 15P C f , 

2
56 3P k , 

1
61 33P f , 

2
63P , 

1
65 33P C , 

where 

 
2

33 33 33C f ,  
1

13 33 31 33( )C f f , 
1

13 33 33 31( )C f C f , 
 1 13 31 11 122( ) ( )k C f C C ,  2 1 660.5k k C , 

2 1
3 11 15 44k f C . 

Consider now two piezoceramic hollow spheres with the ratio of the inner and 
outer radii 0 . Two laws represent the functionally graded property of the material. 
The first one is the Reddy law [21-23] given by                

(1 )p zM M M ,                                                          (7) 

where  is the gradient index [26], pM and zM are material constants of two 

materials, namely PZT-4 and ZnO [27, 28]. The case 0  corresponds to a 
homogeneous PZT-4 hollow sphere and , to a homogeneous ZnO hollow 
sphere. The second law is expressed as 

cos (1 cos )p zM M M .                                                  (8) 

The constitutive equations for epoxy-resin material are given by 
     ijkk

e
ijkk

e
jlil

e
ij

e
ijkk

e
ij CBAt 232 ,                    (9) 

where ijt  is the stress tensor, ij  is the strain tensor, e  and e  are the Lamé elastic 

constants, and ,e eA B  and eC  are the second-order elastic constants. The motion 
equations can be recast as 

   .
e

i ij ju t ,                                                             (10) 

where e  is density of the epoxy material and u  is the displacement vector. 
At the interfaces between the hollow spheres and the matrix, the evanescent 

Bloch boundary conditions are introduced. Usually, at the interfaces between the 
scatterers and the matrix, sharp periodic boundary conditions for the displacement 
and traction vectors are added [3, 20]. 

The Bloch theorem is described by [24] 

 ( , ) ( )exp(i )exp( i )u x t u x kx t , 

 
( , ) exp(iG ) xp(ik )exp( i )G

G
u x t u x x t ,                                     (11) 
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where x  is the position, k  the complex wave vector,  the forcing frequency , t  
the time, u  the displacement, u  the periodic wave function describing the 
displacement, u  the magnitude of the wave, G  the reciprocal lattice constants. 
The Bloch theorem is applied to the displacement functions at the boundaries 
between the scatterers and the matrix, following equation 

 exp( (i )n n NU U N ka ,                                                (12) 

where U  is the wave function, a  the diameter of the hollow sphere, that is a 
vector describing the lengths of the unit cell, the subscript n  is the scatterer  
number and N  is the number of scatterers adjacent to scatterer n . The material 
damping is introduced by using the complex modulus defined by  

  (1 i )rE E ,                                                          (13) 

where rE  is the effective Young’s modulus.  The displacements are registered at 
both sides of the plate. The damping coefficient  is obtained from the ratio of the 
displacements at the receiver and at the input transducer. It takes some time until 
the oscillations become stationary. Therefore, we calculate, for each frequency, 
about 20 periods of the transmitted wave.  

 
3. Inverse problem 

 
We express the state variables of the problem (1)-(13) in the form [3] 

2
1 1

0 2 0
1 44 1

21
1 1

0

cn ( ; )
cn ( ; )

1 cn ( ; )

n

k k kn
k

k k n
k

k k k
k

m
bC m

m
, 1 11 12 13k k k k t ,   

(14) 

2
2 2

2 0
2

21
2 2

0

cn ( ; )
cn ( ; )

1 cn ( ; )

n

k k kn
k

k k n
k

k k k
k

m
F b m

m
,  2 1 2 3k k k kF F F t ,     

(15) 

2
3 3

0 2 0
44 3

21
3 3

0

cn ( ; )
cn ( ; )

1 cn ( ; )

n

k k kn
k

rr k k n
k

k k k
k

m
bC m

m
,  3 1 2 3k r k r k r k t ,  

     (16) 
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2
3 4

0 2 0
2 44 4

21
3 4

0

cn ( ; )
cn ( ; )

1 cn ( ; )

n

k k kn
k

k k n
k

k k k
k

m
bC m

m
,  4 21 22 23k k k k t ,    

 (17) 
2

3 5
2 0

5
21

3 5
0

cn ( ; )
cn ( ; )

1 cn ( ; )

n

k k kn
k

k k n
k

k k k
k

m
G b m

m
,  5 1 2 3k k k kG G G t ,        

(18) 
2

6 6
2 0

6
21

6 6
0

cn ( ; )
cn ( ; )

1 cn ( ; )

n

k k kn
k

k k n
k

k k k
k

m
w b m

m
,   6 1 2 3k k k kw w w t ,       

(19) 
2

7 7
0 2 0

33 7
21

7 7
0

cn ( ; )
cn ( ; )

1 cn ( ; )

n

k k kn
k

r k k n
k

k k k
k

m
bf m

m
, 7 1 2 3k k k k t ,    

(20) 
2

0 8 8
233 0

80
2133

8 8
0

cn ( ; )
cn ( ; )

1 cn ( ; )

n

k k kn
k

k k n
k

k k k
k

m
bf m

m
,   8 1 2 3k k k k t ,    

(21) 
where  2 /r a ,  is the circular frequency, 0

44 44 2| r aC C , 0
33 33 2| r af f , 

0
33 33 2| r a  . The unknowns 11 12 13 1 2 3{ , , ,..., , , }m k k k k k kV , 24m n , are 

determined from a genetic algorithm. The goal of the genetic algorithm is to 
determine the set mV , 24m n  from the minimization of the residuals  

,j r ij j irA M A R , , 1,2i j ,   ,l r kl l krB P B R , , 1,2,...,6k l .                 (22) 

These residuals evaluate the verification of the motion equations. The fitness 
function is expressed as 

8
2 2

1
( )m j

j
F V R ,                                                        (23) 

where  is a measure of fitting the boundary conditions. We use a binary vector 
with m  genes representing the real values of mV , 24m n . The length of the 
vector depends on the required precision, which in this case is of order 6(10 )O . 
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The domain of the parameters [ , ]m j jV a a  with length 2 ja  is divided into at least 
15000 segments of the same length. That means that each parameter mV , 24m n , is 
represented by a string of 22 bits  ( 21 222 3000000 2 ).  One individual consists of 
the row of 24 n  genes, that is, a binary vector with 22 24 n  components 

 ( (1) (1) (1) (2) (2) (2) (24 ) (24 ) (24 )
21 20 0 21 20 0 21 20 0... ... ... ...n n nb b b b b b b b b ). 

The mapping from this binary string into 24 n  real numbers in the range 
[ , ]j ja a is realized in two steps: 

1. Convert each string ( ( ) ( ) ( )
21 20 0...j j jb b b ) from the base 2 to base 10 

                                      ( ) ( ) ( )
21 20 0 2( ... )j j j

jb b b b  , 1,2,...,24j n ; 

2. Find a corresponding real number jb , 1,2,...,24j n . 
The genetic algorithm is linked to the problem to be solved through the 

fitness function (23), which measures how well an individual satisfies the 
requirements. From one generation to the next one, the genetic algorithm usually 
decreases the fitness function of the best model and the average fitness of the 
population. The starting population (with K  individuals) is usually randomly 
generated. Then, new descendant populations are iteratively created, with the goal 
of an overall fitness function decrease from one generation to the next one. 
 
4. Main results 

 
Using in the inverse problem the Bloch boundary conditions greatly reduces the 

computational effort because they cancel the necessity to introduce non-reflecting 
boundary condition at the ends of the plate.  

We have compares different boundary conditions, i.e.  sharp periodic boundary 
conditions for the displacement and traction and the Bloch boundary conditions 
between the scatterers and the matrix to test the effectiveness of non-reflecting 
boundary conditions at the ends of the plate. We introduce two simple porous 
absorbing layers with the flow resistivity e  at 1 0x  and 1x l . The flow 
resistivity of the absorbing layers has a significant role in the modeling and 
stability of the computational scheme. The appropriate selection of the absorbing 
coefficient is necessary not only to achieve no reflections, but also to have a stable 
algorithm. It is easy to observe that reflection is reduced when resistivity is high, 
but the thickness of the absorbing layer can be small since the wave is quickly 
damped inside a high resistivity layer. When the resistivity is low, the reflection 
can also be reduced, but the thickness of the absorbing layer has to be large in 
order to damp the wave inside the absorbing layer. Otherwise, the remaining wave 
can reflect at the end of the absorbing layer and still propagates back to the 
medium domain. The selection of the values e  is made in order to accommodate 
the requirement of reducing unphysical reflections from the boundaries of the plate 
with a reasonable absorbing-layer thickness. 
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Our results certify the unnecessary non-reflecting boundary condition at the 
ends of the plate, if Bloch boundary conditions between the scatterers and the 
matrix are used. The stability of the genetic algorithm is more than satisfactory. 
The time required for calculations of the response functions and dispersion curves 
is very short compared to the time needed if the sharp periodic boundary conditions 
between the scatterers and the matrix and non-reflecting boundary condition at the 
ends of the plate are used. 

The response functions and dispersion curves are calculated by using the 
cnoidal method [30]. The frequency response functions for longitudinal 
displacement in direction 1Ox , and transverse displacement in direction 2Ox , 
respectively, with /without damping is presented in Fig. 2 in the case of the Reddy 
law (7). The case of cosine law (8) is presented in Fig. 3. The amplitude is 
dimensionless 0/U U  with 0U  a reference value. We see from both case that the 
damping reduces the amplitudes of vibrations for both waves. 

 

 
Fig. 2. Frequency response functions for a) longitudinal displacement in direction 1Ox , and  

b) transverse displacement in direction 2Ox , with /without damping, in the case of Reddy law. 
 

The dispersion curves are presented in Figs. 4 and 5, for both the longitudinal 
1Ox  and transverse 2Ox  directions, respectively, without and with material damping. 

Red lines denote the undamped case while blue square lines denote the damped case. 
The band gaps are highlighted in grey.  Fig. 4 displays the dispersion curves in the 
longitudinal direction: (a) real part and (b) imaginary part, and Fig. 5, the dispersion 
curves in the transverse direction: (a) real part and (b) imaginary part.  

The band gaps are determined from the dispersion curves. The band gaps are 
regions of frequencies for which the imaginary parts of all wave vectors are non-
zero. The imaginary parts of the wave vectors represent the attenuation of waves 
and a non-zero value of the imaginary part means that the wave is reducing in 
amplitude after reflection. A positive imaginary part is considered to be an 
attenuating wave in the reverse direction. The band gaps are highlighted n Figs. 5 
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and 6. For the band gaps with complex wave vectors, the waves propagate through 
the medium but the magnitude of the waves decreases with increasing distance. 

 

 
 

Fig. 3. Frequency response functions for a) longitudinal displacement in direction 1Ox , and b) 
transverse displacement in direction 2Ox , with /without damping, in the case of cosine law.  

 

 
 

Fig. 4. Dispersion curves for longitudinal direction: (a) real part and (b) imaginary part. 
 

 
 

Fig. 5. Dispersion curves for transverse direction: (a) real part and (b) imaginary part. 
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5. Concluding remarks 

An inverse problem based on Bloch wave boundary conditions and the nonlinear 
superposition of waves is proposed in this paper in order to calculate the band 
structure of a sonic plate. The sonic plate is composed of an array of acoustic 
scatterers which are piezoceramic hollow spheres embedded in an epoxy matrix. The 
scatterers are made from functionally graded materials with radial polarization, 
which support the Reddy and cosine laws. Using the Bloch boundary conditions 
greatly reduces the computational effort because they cancel the necessity of 
introducing the non-reflecting boundary condition at the ends of the plate. We have 
compares different boundary conditions, i.e.  sharp periodic boundary conditions for 
the displacement and traction and the Bloch boundary conditions between the 
scatterers and the matrix to test the effectiveness of non-reflecting boundary 
conditions at the ends of the plate. Our results certify the lack of importance of the 
non-reflecting boundary condition at the ends of the plate, if Bloch boundary 
conditions are used.  

The cnoidal method is applied to determine the band structure of sonic periodic 
structures using only the responses at different points without knowledge of the 
material properties. Using the nonlinear superposition principle and the Bloch wave 
boundary conditions, the relationship between the displacements at adjacent 
scattereres was determined. The stability of the genetic algorithm is more than 
satisfactory. Time required for calculations of the response functions and dispersion 
curves is very short compared to the time needed if the sharp periodic boundary 
conditions between the scatterers and the matrix and non-reflecting boundary 
condition at the ends of the plate are used. 
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